
Chapter 2

 Software Engineering

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman. 1

Slide Set to accompany

Software Engineering: A Practitioner’s Approach, 8/e
by Roger S. Pressman and Bruce R. Maxim

Slides copyright © 1996, 2001, 2005, 2009, 2014 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction

with Software Engineering: A Practitioner's Approach, 8/e. Any other reproduction or use is

prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student

use.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman. 2

Software Engineering

 Some realities:

 a concerted effort should be made to understand the

problem before a software solution is developed

 design becomes a pivotal activity

 software should exhibit high quality

 software should be maintainable

 The seminal definition:

 [Software engineering is] the establishment and use

of sound engineering principles in order to obtain

economically software that is reliable and works

efficiently on real machines.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman. 3

Software Engineering

 The IEEE definition:
 Software Engineering:

 (1) The application of a systematic, disciplined,

quantifiable approach to the development, operation,

and maintenance of software; that is, the application

of engineering to software.

 (2) The study of approaches as in (1).

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman. 4

A Layered Technology

Software Engineering

a “quality” focus

process model

methods

tools

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman. 5

A Process Framework

Process framework

Framework activities

work tasks

work products

milestones & deliverables

QA checkpoints

Umbrella Activities

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman. 6

Framework Activities

 Communication

 Planning

 Modeling
 Analysis of requirements

 Design

 Construction
 Code generation

 Testing

 Deployment

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman. 7

Umbrella Activities
 Software project tracking and control

 Risk management

 Software quality assurance

 Technical reviews

 Measurement

 Software configuration management

 Reusability management

 Work product preparation and production

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman. 8

Adapting a Process Model

 the overall flow of activities, actions, and tasks and the
interdependencies among them

 the degree to which actions and tasks are defined within
each framework activity

 the degree to which work products are identified and
required

 the manner which quality assurance activities are applied

 the manner in which project tracking and control activities
are applied

 the overall degree of detail and rigor with which the
process is described

 the degree to which the customer and other stakeholders
are involved with the project

 the level of autonomy given to the software team

 the degree to which team organization and roles are
prescribed

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman. 9

The Essence of Practice

 Polya suggests:

1. Understand the problem (communication and analysis).

2. Plan a solution (modeling and software design).

3. Carry out the plan (code generation).

4. Examine the result for accuracy (testing and quality

assurance).

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman. 10

Understand the Problem

 Who has a stake in the solution to the problem?
That is, who are the stakeholders?

 What are the unknowns? What data, functions,
and features are required to properly solve the
problem?

 Can the problem be compartmentalized? Is it
possible to represent smaller problems that
may be easier to understand?

 Can the problem be represented graphically?
Can an analysis model be created?

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman. 11

Plan the Solution

 Have you seen similar problems before? Are there

patterns that are recognizable in a potential solution? Is

there existing software that implements the data,

functions, and features that are required?

 Has a similar problem been solved? If so, are elements

of the solution reusable?

 Can subproblems be defined? If so, are solutions readily

apparent for the subproblems?

 Can you represent a solution in a manner that leads to

effective implementation? Can a design model be

created?

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman. 12

Carry Out the Plan

 Does the solution conform to the plan? Is

source code traceable to the design model?

 Is each component part of the solution provably

correct? Has the design and code been

reviewed, or better, have correctness proofs

been applied to algorithm?

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman. 13

Examine the Result

 Is it possible to test each component part of the

solution? Has a reasonable testing strategy

been implemented?

 Does the solution produce results that conform

to the data, functions, and features that are

required? Has the software been validated

against all stakeholder requirements?

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman. 14

Hooker’s General Principles

 1: The Reason It All Exists

 2: KISS (Keep It Simple, Stupid!)

 3: Maintain the Vision

 4: What You Produce, Others Will Consume

 5: Be Open to the Future

 6: Plan Ahead for Reuse

 7: Think!

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman. 15

Software Myths

 Affect managers, customers (and

other non-technical stakeholders)

and practitioners

 Are believable because they often

have elements of truth,

but …

 Invariably lead to bad decisions,

therefore …

 Insist on reality as you navigate your

way through software engineering

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman. 16

How It all Starts

 SafeHome:
 Every software project is precipitated by some

business need—

• the need to correct a defect in an existing application;

• the need to the need to adapt a ‘legacy system’ to a

changing business environment;

• the need to extend the functions and features of an

existing application, or

• the need to create a new product, service, or system.

