
소프트웨어공학 원리
(SEP521)

Jongmoon Baik

Introduction to UML

2

Design using UML 2.0

3

• Why model

• What is UML

• UML history

• UML 2.0

• Diagram/View paradigm

• UML diagrams

– Use case

– Class

– Sequence

– State machine

Contents

4

Here, we focus on..

Design

Code

Maintenance Test

Program

ming

Techniqu

e

Eclipse, Jbuilder etc.

Programmer

SW Development
Process

Process

Technology

People

Analysis

Conceptualization

Software Configuration
Management

Software Requirement Management

Telelogic

DOORS
Requirement

Elicitation

Technique

Analyst

Requirement

Analysis

Technique

Analyst
Software

Architecture/

Design Technique

 Tau G2
Designer

5

• To easily communicate information between

different stakeholders in an unambiguous way

• To specify target-language-independent

designs

• To provide structure for problem solving

• To provide mechanisms(abstractions, views,

filtering, structure) to manage complexity

• To be able to easily experiment to explore

multiple solutions

Why model

6

• Unified Modeling Language

– Visual language for specifying, constructing and
documenting

• Maintained by the OMG (Object Management
Group)

– Website: http://www.omg.org

• Object-oriented

• Model / view paradigm

• Target language independent

What is UML?

http://www.omg.org/

7

 Fall ‘2008

UML history

UML Partners

Web – June ‘96

OOPSLA ‘95

Booch method OMT

OOSE Other methods

Unified
Method
0.8

UML 1.3

UML 1.1

UML 1.0

UML 0.9

OMG Acceptance, Nov ‘97

Fall ‘99

UML 1.4
Fall ‘01

Summer ‘03
UML 2.x

8

• UML 2.0 leverages the industry’s investment in
UML 1.x and makes UML comprehensive,
scalable and mature

• UML 2.0 designed to solve the key UML 1.x
issues

• Major improvements in UML 2.0 include:
– New internal structure diagrams support precise

definition of architecture, interfaces and components

– Improved scalability in state machine and sequence
diagrams

– Better semantic foundation enables advanced model
verification and full code generation

UML 2.0

9

• Each diagram is just a view of part of the system

• Together, all diagrams provides a complete picture

Diagram/view paradigm

Underlying System
Model

10

UML diagrams

Class
Diagram

Component
Diagram

Communication
Diagram

Interaction
Overview
Diagram

Sequence
Diagram

Timing
Diagram

Use Case
Diagram

State Machine
Diagram

Activity
Diagram

Package
Diagram

Composite
Structure
Diagram

Object
Diagram

Deployment
Diagram

Interaction
Diagram

Behavioral
Diagram Structural

Diagram

11

• Describe WHAT the system will do at a high-level

Use Case Diagram

Telephone Catalog

Check Status

Place Order

Arrange
Payment

Supply
Customer
Data

Actor

Customer

Use Case

Use Case Name

Subject Name
Subject

System Boundary

Association

<<include>> <<include>>
Dependency

12

• Someone or some thing that must interact with the

system under development

– Users, external systems, devices

Actor

Telephone Catalog

Check Status

Place Order

Arrange
Payment

Supply
Customer
Data

Actor

Customer
<<include>> <<include>>

13

• Functionality that the system shall offer to an actor

• Interaction between one or more actors and the

system

Use Case

Use Case

Telephone Catalog

Check Status

Place Order

Arrange
Payment

Supply
Customer
Data

Customer
<<include>> <<include>>

Use Case Name

14

• Indicate system boundary

• Represent the system begin developed

– All actors who interact with the system are outside of it

Subject Symbol

Telephone Catalog

Check Status

Place Order

Arrange
Payment

Supply
Customer
Data

Customer
<<include>> <<include>>

Subject Subject Name

System Boundary

15

• Drawn between an actor and a use case

• Represent bi-directional communication between the

actor and the system

Association

Telephone Catalog

Check Status

Place Order

Arrange
Payment

Supply
Customer
Data

Customer
<<include>> <<include>>

Association

16

Dependency – Include

 Represent relationship from a base to an inclusion use
case

 Imply a Use Case calls another Use Case
 Primarily used to reuse behavior common to several

Use Cases

Dependency

Telephone Catalog

Check Status

Place Order

Arrange
Payment

Supply
Customer
Data

Customer
<<include>> <<include>>

Inclusion Use Cases

Base Use Case

17

Class Diagram

• Description of static structure
– Showing the types of objects in a system and the

relationships between them

• Foundation for the other diagrams

Tea Coffee

- Milk: Boolean
- Sugar: Integer
- Coffee: String

Beverage

- Water: Integer

+ Addwater()

- Teabag: String

+ getTea() + getCoffee()

Person

- Name: String
- Age: Integer

+ getName()
+ getAge()

Class Name

Class
Attributes

Class
Operations

1

*
drinks

Association

Multiplicity

Generalization

18

Classes

• Most important building block of any object-oriented system
• Description of a set of objects
• Abstraction of the entities

– Existing in the problem/solution domain

Class Name

Person

- Name: String
- Age: Integer

+ getName()
+ getAge()

Coffee
- Milk: Boolean
- Sugar: Integer
- Coffee: String

+ getCoffee()

Tea

- Teabag:
String

+ getTea()

19

Attributes and Operations

• Attributes
– Represent some property of the thing being modeled
– Syntax: attributeName : Type

• Operations
– Implement of a service requested from any object of the

class
– Syntax: operationName(param1:type, param2:type, ...) :

Result

Class
Attributes

Class
Operations

Person

- Name: String
- Age: Integer

+ getName()
+ getAge()

Coffee
- Milk: Boolean
- Sugar: Integer
- Coffee : String

+ getCoffee()

20

Association and Multiplicity

• Association

– Relationship between classes that specifies
connections among their instances

• Multiplicity

– Number of instances of one class related to ONE
instance of the other class

Association name
(verb phrase)

drinks 1

Multiplicity

Person

- Name: String
- Age: Integer

+ getName()
+ getAge()

Coffee
- Milk: Boolean
- Sugar: Integer
- Coffee: String
 “One person drinks zero to many coffees”

*

Multiplicity

+ getCoffee()

21

Aggregations and Compositions

• Aggregation

– Weak “whole-part” relationship
• Mailitem ‘has a’ address

• Composition

– Strong “whole-part” relationship between elements
• Window ‘contains a’ scrollbar

Composition Aggregation

Window

DrawingArea

Scrollbar

1

0 ..2

Mailitem

Address Body

1

0

22

Inheritance

• Relationship between superclass and subclasses

– All attributes and operations of the superclass are part
of the subclasses

Tea Coffee

- Milk: Boolean
- Sugar: Integer
- Coffee: String

Beverage

- Water: Integer

+ Addwater()

- Teabag: String

+ getTea() + getCoffee()

Generalization

23

Generalization/Specialization

• Generalization
– Building a more general class from a set of specific

classes

• Specialization
– Creating specialized classes base on a more general class

Generalization
Specialization

Tea Coffee
- Milk: Boolean
- Sugar: Integer
- Coffee: String

+ getCoffee()

Beverage
- Water: Integer

+ Addwater()

- Teabag: String

+ getTea()

24

• Active class

– Own a thread control and can initiate control activity
• Used when asynchronous communication is necessary

• Typically modeled with a statemachine of its behavior

• Encapsulated with ports and interfaces

• Passive class

– Created as part of an action by another object
• Own address space, but not thread of control

Active vs. Passive Class

Active
class

Passive
class

Player

Id : Integer

InitiateGame ()

Game

Level : Charstring

StartNew ()

NumberOfPlayers : Intege
r HighScore : Integer

GameOver ()

25

• Ports

– Define an interaction point on a classifier

• Interfaces

– Declaration of a coherent set of public features and obligations
• Contract between providers and consumers of services

Ports and Interfaces

Interface
Name Interface

Definition

 <<interface>>

 ToUser

signal CupOfCoffee()
signal CupofWater()
signal ReturnChange()

 <<interface>>

 FromUser

signal Coin (Integer)
signal Tea()
signal Coffee()

 Coffee Machine

Port symbol

26

• Provided interface
– Class provides the services of the interface to outside callers

– What the object can do

– Provided interface accept incoming signal form outside callers

• Required interface
– Class uses to implement its internal behavior

– What the object needs to do

– Outgoing signal are sent via required interface

Provided/ Required Interface

PrintServer

SubmitJob

CheckStatu
s SetPrintProperties

Provided Interface
Class

Required Interface

Interface Name

27

Computer Device Example

28

• Emphasize on the sequence of communications between parts

• Show sequences of messages (“interactions”) between
instances in the system

• Emphasize time ordering

Sequence Diagram

Lifeline

Message
name

:Customer :CoffeeMachine

ref InsertCoins

ref ReturnCoins

theMessage(“Insert Coins”)

Coffee()
CupofCoffee()

sd MakeCoffee

Messages
line

Reference
Frame

Sequence Diagram
Name

29

Lifelines

• Individual participant in the interaction over period time
– Subsystem/ object/ class

– Actor

– External system roles in the interaction

:Customer :CoffeeMachine

ref InsertCoins

ref ReturnCoins

theMessage(“Insert Coins”)

Coffee()
CupofCoffee()

sd MakeCoffee

Lifeline

Instance name (object) :
Type name (class)

30

• One-way communication between two objects

• May have parameters that convey values

Messages

:Customer :CoffeeMachine

ref InsertCoins

ref ReturnCoins

theMessage(“Insert Coins”)

Coffee()

CupofCoffee()

Message
name

sd MakeCoffee

Messages
line

31

Referencing

• Reuse already existing sequence diagrams

– Avoid unnecessary duplication

Reference

:Customer :CoffeeMachine

sd InsertCoins

Coin()

OK()

:Customer :CoffeeMachine

ref
InsertCoins

theMessage(“Insert Coins”)

Coffee()

CupofCo
ffee() ref

ReturnCoins

sd MakeCoffee

32

• Specify the dynamic behavior of an element

• Show

– The life history of a given class

• Capture significant events that can act on an object

– The event that cause a transition from one state to another

– The actions that result from a state change

State Machine Diagram

Waiting
Confirm
Credit

Cancel
Order

receive order [amount
>$25]

State

Initial
State

Final
State Transition

Guard Event

Action

rejected

Process
Order

receive order
[amount <$25]

approved/
debit account()

33

• State

– Condition or situation during the life of an object
• Satisfies some condition, performs some activity or waits for some event

States

Waiting
Confirm
Credit

Cancel
Order

receive order [amount
>$25]

State

Initial
State

Final
State

rejected

Process
Order

receive order
[amount <$25]

approved/
debit account()

State

34

• Event

– Stimulus which causes the object to change state

• Action

– Output of a signal or an operation call

Event and Action

Waiting
Confirm
Credit

Cancel
Order

receive order [amount
>$25]

Guard Condition Event

Action

rejected

Process
Order

receive order
[amount <$25]

approved/
debit account()

35

• Change state from one to another triggered by an

event

• Occur only when guard condition is true

• Syntax: event(arguments)[condition]/action

Transition

Waiting
Confirm
Credit

Cancel
Order

receive order [amount
>$25]

Transition

rejected

Process
Order

receive order
[amount <$25]

approved/
debit account()

36

State or Transition-oriented Syntax

Off

On

activate

On

On

Off

deactivate

Off startBilling () ;

Off

On

on / ̂ activate;
startBilling ;
on / ̂

()
off / ̂ deactivate off / ̂ ;

Action

Output

Input

Flowline
Transition line

•Transition line: transition details shown on line textually

•Flowline: simple line; transition details shown in chained symbols

37

Q & A

