
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 1

Chapter 13

 Architectural Design

Slide Set to accompany

Software Engineering: A Practitioner’s Approach, 8/e
by Roger S. Pressman and Bruce R. Maxim

Slides copyright © 1996, 2001, 2005, 2009, 2014 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction

with Software Engineering: A Practitioner's Approach, 8/e. Any other reproduction or use is

prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student

use.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 2

Why Architecture?

The architecture is not the operational software. Rather,
it is a representation that enables a software engineer
to:

(1) analyze the effectiveness of the design in meeting its
stated requirements,

(2) consider architectural alternatives at a stage when
making design changes is still relatively easy, and

(3) reduce the risks associated with the construction of
the software.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 3

Why is Architecture Important?

 Representations of software architecture are an enabler

for communication between all parties (stakeholders)

interested in the development of a computer-based

system.

 The architecture highlights early design decisions that

will have a profound impact on all software engineering

work that follows and, as important, on the ultimate

success of the system as an operational entity.

 Architecture “constitutes a relatively small, intellectually

graspable mode of how the system is structured and

how its components work together” [BAS03].

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 4

Architectural Descriptions

 The IEEE Computer Society has proposed IEEE-Std-
1471-2000, Recommended Practice for Architectural
Description of Software-Intensive System, [IEE00]

 to establish a conceptual framework and vocabulary for use
during the design of software architecture,

 to provide detailed guidelines for representing an architectural
description, and

 to encourage sound architectural design practices.

 The IEEE Standard defines an architectural description (AD)
as a “a collection of products to document an architecture.”

 The description itself is represented using multiple views, where
each view is “a representation of a whole system from the
perspective of a related set of [stakeholder] concerns.”

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 5

Architectural Genres

 Genre implies a specific category within the

overall software domain.

 Within each category, you encounter a number

of subcategories.
 For example, within the genre of buildings, you would

encounter the following general styles: houses,

condos, apartment buildings, office buildings,

industrial building, warehouses, and so on.

 Within each general style, more specific styles might

apply. Each style would have a structure that can be

described using a set of predictable patterns.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 6

Architectural Styles

 Data-centered architectures

 Data flow architectures

 Call and return architectures

 Object-oriented architectures

 Layered architectures

Each style describes a system category that encompasses:
(1) a set of components (e.g., a database, computational
modules) that perform a function required by a system, (2) a
set of connectors that enable “communication, coordination
and cooperation” among components, (3) constraints that
define how components can be integrated to form the system,
and (4) semantic models that enable a designer to
understand the overall properties of a system by analyzing the
known properties of its constituent parts.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 7

Data-Centered Architecture

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 8

Data Flow Architecture

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 9

Call and Return Architecture

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 10

Layered Architecture

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 11

Architectural Patterns
 Concurrency—applications must handle multiple tasks in a

manner that simulates parallelism

 operating system process management pattern

 task scheduler pattern

 Persistence—Data persists if it survives past the execution of
the process that created it. Two patterns are common:

 a database management system pattern that applies the storage
and retrieval capability of a DBMS to the application architecture

 an application level persistence pattern that builds persistence
features into the application architecture

 Distribution— the manner in which systems or components
within systems communicate with one another in a distributed
environment

 A broker acts as a ‘middle-man’ between the client component and a
server component.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 12

Architectural Design

 The software must be placed into context

 the design should define the external entities (other

systems, devices, people) that the software interacts

with and the nature of the interaction

 A set of architectural archetypes should be

identified

 An archetype is an abstraction (similar to a class)

that represents one element of system behavior

 The designer specifies the structure of the

system by defining and refining software

components that implement each archetype

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 13

Architectural Context

target system:

Security Function
uses

uses peershomeowner

Safehome

Product
Internet-based

system

surveillance

function

sensors

control

panel

sensors

uses

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 14

Archetypes

Figure 10.7 UML relat ionships for SafeHome securit y funct ion archetypes

(adapted f rom [BOS00])

Cont roller

Node

communicates with

Detector Indicator

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 15

Component Structure

SafeHome

Execut ive

Ext ernal

Communicat ion

Management

GUI Int ernet

Int erface

Funct ion

select ion

Securit y Surveillance Home

management

Cont rol

panel

processing

det ect or

management

alarm

processing

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 16

Refined Component Structure

sensor
sensor

sensor
sensor

sensor
sensor
sensor

sensor

Ext ernal

Communicat ion

Management

GUI Internet

Interface

Security

Cont ro l

panel

processing

det ect or

m anagem ent

alarm

processing

Key pad

processing

CP d isp lay

funct ions

scheduler

sensor
sensor
sensor
sensor

phone

com m unicat ion

alarm

SafeHome

Execut ive

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 17

Architectural Considerations

 Economy – The best software is uncluttered and

relies on abstraction to reduce unnecessary detail.

 Visibility – Architectural decisions and the reasons

for them should be obvious to software engineers

who examine the model at a later time.

 Spacing – Separation of concerns in a design

without introducing hidden dependencies.

 Symmetry – Architectural symmetry implies that a

system is consistent and balanced in its attributes.

 Emergence – Emergent, self-organized behavior

and control.

Architectural Decision

Documentation

1. Determine which information items are needed for each

decision.

2. Define links between each decision and appropriate

requirements.

3. Provide mechanisms to change status when alternative

decisions need to be evaluated.

4. Define prerequisite relationships among decisions to

support traceability.

5. Link significant decisions to architectural views resulting

from decisions.

6. Document and communicate all decisions as they are

made.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 18

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 19

Architectural Tradeoff Analysis

1. Collect scenarios.

2. Elicit requirements, constraints, and environment description.

3. Describe the architectural styles/patterns that have been

chosen to address the scenarios and requirements:

 • module view

 • process view

 • data flow view

4. Evaluate quality attributes by considered each attribute in

isolation.

5. Identify the sensitivity of quality attributes to various

architectural attributes for a specific architectural style.

6. Critique candidate architectures (developed in step 3) using the

sensitivity analysis conducted in step 5.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 20

Architectural Complexity

 the overall complexity of a proposed

architecture is assessed by considering the

dependencies between components within the

architecture [Zha98]

 Sharing dependencies represent dependence

relationships among consumers who use the same

resource or producers who produce for the same

consumers.

 Flow dependencies represent dependence

relationships between producers and consumers of

resources.

 Constrained dependencies represent constraints on

the relative flow of control among a set of activities.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 21

ADL

 Architectural description language (ADL) provides

a semantics and syntax for describing a software

architecture

 Provide the designer with the ability to:

 decompose architectural components

 compose individual components into larger architectural

blocks and

 represent interfaces (connection mechanisms) between

components.

Architecture Reviews

 Assess the ability of the software architecture

to meet the systems quality requirements and

identify potential risks

 Have the potential to reduce project costs by

detecting design problems early

 Often make use of experience-based reviews,

prototype evaluation, and scenario reviews,

and checklists

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 22

Patter-Based Architecture

Review

1. Identify and discuss the quality attributes by walking

through the use cases.

2. Discuss a diagram of system’s architecture in relation to

its requirements.

3. Identify the architecture patterns used and match the

system’s structure to the patterns’ structure.

4. Use existing documentation and use cases to

determine each pattern’s effect on quality attributes.

5. Identify all quality issues raised by architecture patterns

used in the design.

6. Develop a short summary of issues uncovered during

the meeting and make revisions to the walking skeleton.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 23

Agility and Architecture

 To avoid rework, user stories are used to

create and evolve an architectural model

(walking skeleton) before coding

 Hybrid models which allow software architects

contributing users stories to the evolving

storyboard

 Well run agile projects include delivery of work

products during each sprint

 Reviewing code emerging from the sprint can

be a useful form of architectural review

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 24

