
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 1

Chapter 14

 Component-Level Design

Slide Set to accompany

Software Engineering: A Practitioner’s Approach, 8/e
by Roger S. Pressman and Bruce R. Maxim

Slides copyright © 1996, 2001, 2005, 2009, 2014 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction

with Software Engineering: A Practitioner's Approach, 8/e. Any other reproduction or use is

prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student

use.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 2

What is a Component?

 OMG Unified Modeling Language Specification [OMG01]
defines a component as

 “… a modular, deployable, and replaceable part of a
system that encapsulates implementation and exposes a
set of interfaces.””

 OO view: a component contains a set of collaborating
classes

 Conventional view: a component contains processing
logic, the internal data structures that are required to
implement the processing logic, and an interface that
enables the component to be invoked and data to be
passed to it.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 3

OO Component

Print Job

c om put eJob

in i t ia t eJob

number Of Pages

number Of Sides

paper Type

 paper Weight

 paper Size

 paper Color

magnif icat ion

color Requir ement s

pr oduct ionFeat ur es

 collat ionOpt ions

 bindingOpt ions

 cover St ock

 bleed

 pr ior it y

t ot alJobCost

WOnumber

PrintJob

comput ePageCost ()

comput ePaper Cost ()

comput ePr odCost ()

comput eTot alJobCost ()

buildWor kOr der ()

checkPr ior it y ()

passJobt o Pr oduct ion()

elaborated design class
< < in t er f ace> >

co m p u t eJo b

comput ePageCost ()

comput ePaper Cost ()

comput ePr odCost ()

comput eTot alJobCost ()

< < in t er f ace> >

in it iat eJo b

buildWor kOr der ()

checkPr ior it y ()

passJobt o Pr oduct ion()

design c om ponent

num berOf Pages

num berOf Sides

paperTy pe

m agni f ic at ion

produc t ionFeat ures

Prin t Job

c om put eJobCost()

passJobt oPrint er()

analy sis c lass

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 4

Conventional Component

ComputePageCost

design component

accessCostsDB

getJobData

elaborated module

PageCost

in: job size
in: color=1, 2, 3 , 4

in: pageSize = A, B, C, B
out : BPC

out : SF

in: numberPages
in: numberDocs

in: sides= 1, 2
in: color=1, 2 , 3 , 4

in: page size = A, B, C, B
out : page cost

 job size (JS) =

 num berPages * num berDocs;

lookup base page cost (BPC) -->

 accessCost sDB (JS, co lor) ;

lookup size fact or (SF) -->

 accessCost DB (JS, co lor, size)

job com plexit y fact or (JCF) =

 1 + [(sides-1) * sideCost + SF]

pagecost = BPC * JCF

get JobDat a (num berPages, num berDocs,

sides, co lor, pageSize, pageCost)

accessCost sDB (jobSize, co lor, pageSize,

BPC, SF)

com put ePageCost()

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 5

Basic Design Principles
 The Open-Closed Principle (OCP). “A module [component]

should be open for extension but closed for modification.

 The Liskov Substitution Principle (LSP). “Subclasses should be
substitutable for their base classes.

 Dependency Inversion Principle (DIP). “Depend on abstractions.
Do not depend on concretions.”

 The Interface Segregation Principle (ISP). “Many client-specific
interfaces are better than one general purpose interface.

 The Release Reuse Equivalency Principle (REP). “The granule of
reuse is the granule of release.”

 The Common Closure Principle (CCP). “Classes that change
together belong together.”

 The Common Reuse Principle (CRP). “Classes that aren’t reused

together should not be grouped together.”

Source: Martin, R., “Design Principles and Design Patterns,” downloaded from http:www.objectmentor.com, 2000.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 6

Design Guidelines

 Components

 Naming conventions should be established for
components that are specified as part of the
architectural model and then refined and elaborated
as part of the component-level model

 Interfaces

 Interfaces provide important information about
communication and collaboration (as well as helping
us to achieve the OPC)

 Dependencies and Inheritance

 it is a good idea to model dependencies from left to
right and inheritance from bottom (derived classes)
to top (base classes).

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 7

Cohesion

 Conventional view:

 the “single-mindedness” of a module

 OO view:

 cohesion implies that a component or class encapsulates
only attributes and operations that are closely related to one
another and to the class or component itself

 Levels of cohesion

 Functional

 Layer

 Communicational

 Sequential

 Procedural

 Temporal

 utility

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 8

Coupling
 Conventional view:

 The degree to which a component is connected to other
components and to the external world

 OO view:

 a qualitative measure of the degree to which classes are
connected to one another

 Level of coupling
 Content

 Common

 Control

 Stamp

 Data

 Routine call

 Type use

 Inclusion or import

 External

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 9

Component Level Design-I

 Step 1. Identify all design classes that correspond to

the problem domain.

 Step 2. Identify all design classes that correspond to

the infrastructure domain.

 Step 3. Elaborate all design classes that are not

acquired as reusable components.

 Step 3a. Specify message details when classes or

component collaborate.

 Step 3b. Identify appropriate interfaces for each

component.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 10

Component-Level Design-II
 Step 3c. Elaborate attributes and define data types

and data structures required to implement them.

 Step 3d. Describe processing flow within each
operation in detail.

 Step 4. Describe persistent data sources (databases
and files) and identify the classes required to manage
them.

 Step 5. Develop and elaborate behavioral
representations for a class or component.

 Step 6. Elaborate deployment diagrams to provide
additional implementation detail.

 Step 7. Factor every component-level design
representation and always consider alternatives.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 11

Collaboration Diagram

:ProductionJob

:WorkOrder

:JobQueue

1: buildJob (WOnumber)
2: submitJob (WOnumber)

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 12

Refactoring

PrintJob

computeJob

init iateJob

Product ionJob

buildJob

submitJob

WorkOrder

appropriat e at t ribut es

buildWorkOrder ()
getJobDescriipt ion

JobQueue

appropriat e at t ribut es

checkPriority ()

<<interface>>

init iateJob

passJobToProduct ion()

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 13

Activity Diagram validate at t ributes

input

accessPaperDB(weight)

returns baseCostperPage

size = B paperCostperPage =

paperCostperPage * 1 .2

size = C paperCostperPage =

paperCostperPage * 1 .4

size = D paperCostperPage =

paperCostperPage * 1 .6

color is custom
paperCostperPage =

 paperCostperPage * 1 .1 4

color is standard

paperCostperPage =

 baseCostperPage

returns

(paperCostperPage)

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 14

Statechart buildingJobDat a

ent ry/ readJobDat a ()

exit / displayJobDat a ()

do/ checkConsist ency()

include/ dat aInput

ent ry/ comput eJob

exit / save t ot alJobCost

f ormingJob

ent ry/ buildJob

exit / save WOnumber

do/

comput ingJobCost

submit t ingJob

ent ry/ submit Job

exit / init iat eJob

do/ place on JobQueue

behavior w it h in t he

st at e build ingJobDat a

dat aInput Complet ed [all dat a
it ems consist ent] / d isp layUserOpt ions

dat aInput Incomplet e

jobCost Accept ed [cust omer is aut horized] /

get Elect ronicSignat ure

jobSubmit t ed [all aut horizat ions acquired] /

prin t WorkOrder

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 15

Component Design for WebApps

 WebApp component is
 (1) a well-defined cohesive function that manipulates

content or provides computational or data processing

for an end-user, or

 (2) a cohesive package of content and functionality

that provides end-user with some required capability.

 Therefore, component-level design for

WebApps often incorporates elements of

content design and functional design.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 16

Content Design for WebApps

 focuses on content objects and the manner in which they
may be packaged for presentation to a WebApp end-
user

 consider a Web-based video surveillance capability
within SafeHomeAssured.com

 potential content components can be defined for the video
surveillance capability:

• (1) the content objects that represent the space layout (the
floor plan) with additional icons representing the location of
sensors and video cameras;

• (2) the collection of thumbnail video captures (each an
separate data object), and

• (3) the streaming video window for a specific camera.

 Each of these components can be separately named and
manipulated as a package.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 17

Functional Design for WebApps

 Modern Web applications deliver increasingly
sophisticated processing functions that:

 (1) perform localized processing to generate content and
navigation capability in a dynamic fashion;

 (2) provide computation or data processing capability that
is appropriate for the WebApp’s business domain;

 (3) provide sophisticated database query and access, or

 (4) establish data interfaces with external corporate
systems.

 To achieve these (and many other) capabilities, you will
design and construct WebApp functional components
that are identical in form to software components for
conventional software.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 18

Component Design for Mobile Apps

 Thin web-based client

 Interface layer only on device

 Business and data layers implemented using web or

cloud services

 Rich client

 All three layers (interface, business, data)

implemented on device

 Subject to mobile device limitations

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 19

Designing Conventional Components

 The design of processing logic is governed by

the basic principles of algorithm design and

structured programming

 The design of data structures is defined by the

data model developed for the system

 The design of interfaces is governed by the

collaborations that a component must effect

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 20

Component-Based Development

 When faced with the possibility of reuse, the

software team asks:

 Are commercial off-the-shelf (COTS) components

available to implement the requirement?

 Are internally-developed reusable components

available to implement the requirement?

 Are the interfaces for available components

compatible within the architecture of the system to be

built?

 At the same time, they are faced with the

following impediments to reuse ...

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 21

Impediments to Reuse

 Few companies and organizations have anything that even
slightly resembles a comprehensive software reusability
plan.

 Although an increasing number of software vendors
currently sell tools or components that provide direct
assistance for software reuse, the majority of software
developers do not use them.

 Relatively little training is available to help software
engineers and managers understand and apply reuse.

 Many software practitioners continue to believe that reuse is
“more trouble than it’s worth.”

 Many companies continue to encourage of software
development methodologies which do not facilitate reuse

 Few companies provide an incentives to produce reusable
program components.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 22

The CBSE Process

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 23

Domain Engineering

1. Define the domain to be investigated.

2. Categorize the items extracted from the

domain.

3. Collect a representative sample of

applications in the domain.

4. Analyze each application in the sample.

5. Develop an analysis model for the objects.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 24

Identifying Reusable Components
• Is component functionality required on future implementations?

• How common is the component's function within the domain?

• Is there duplication of the component's function within the domain?

• Is the component hardware-dependent?

• Does the hardware remain unchanged between implementations?

• Can the hardware specifics be removed to another component?

• Is the design optimized enough for the next implementation?

• Can we parameterize a non-reusable component so that it

becomes reusable?

• Is the component reusable in many implementations with only

minor changes?

• Is reuse through modification feasible?

• Can a non-reusable component be decomposed to yield reusable

components?

• How valid is component decomposition for reuse?

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 25

Component-Based SE

 a library of components must be available

 components should have a consistent

structure

 a standard should exist, e.g.,

 OMG/CORBA

 Microsoft COM

 Sun JavaBeans

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 26

CBSE Activities

 Component qualification

 Component adaptation

 Component composition

 Component update

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 27

Qualification

Before a component can be used, you must consider:

• application programming interface (API)

• development and integration tools required by the component

• run-time requirements including resource usage (e.g., memory

or storage), timing or speed, and network protocol

• service requirements including operating system interfaces

and support from other components

• security features including access controls and authentication

protocol

• embedded design assumptions including the use of specific

numerical or non-numerical algorithms

• exception handling

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 28

Adaptation

The implication of “easy integration” is:

(1) that consistent methods of resource
management have been implemented for all
components in the library;

(2) that common activities such as data
management exist for all components, and

(3) that interfaces within the architecture and with
the external environment have been implemented
in a consistent manner.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 29

Composition

 An infrastructure must be established to bind

components together

 Architectural ingredients for composition include:

 Data exchange model

 Automation

 Structured storage

 Underlying object model

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 30

OMG/ CORBA
 The Object Management Group has published a common

object request broker architecture (OMG/CORBA).

 An object request broker (ORB) provides services that
enable reusable components (objects) to communicate with
other components, regardless of their location within a
system.

 Integration of CORBA components (without modification)
within a system is assured if an interface definition language
(IDL) interface is created for every component.

 Objects within the client application request one or more
services from the ORB server. Requests are made via an
IDL or dynamically at run time.

 An interface repository contains all necessary information
about the service’s request and response formats.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 31

ORB Architecture

Interface

Repository

ORB

interface

LAN

Client

Server

Objects

ORB Core

Client

IDL

Stubs

Dynamic

Invocation

Interface

Repository

ORB

interface

Server

IDL

Stubs

Object

Adapter

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 32

Microsoft COM

 The component object model (COM) provides a

specification for using components produced by

various vendors within a single application running

under the Windows operating system.

 COM encompasses two elements:

 COM interfaces (implemented as COM objects)

 a set of mechanisms for registering and passing messages

between COM interfaces.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 33

Sun JavaBeans
 The JavaBeans component system is a portable,

platform independent CBSE infrastructure
developed using the Java programming language.

 The JavaBeans component system encompasses a
set of tools, called the Bean Development Kit
(BDK), that allows developers to

 analyze how existing Beans (components) work

 customize their behavior and appearance

 establish mechanisms for coordination and
communication

 develop custom Beans for use in a specific application

 test and evaluate Bean behavior.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 34

Classification

 Enumerated classification—components are
described by defining a hierarchical structure
in which classes and varying levels of
subclasses of software components are
defined

 Faceted classification—a domain area is
analyzed and a set of basic descriptive
features are identified

 Attribute-value classification—a set of
attributes are defined for all components in a
domain area

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 35

Indexing

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 36

The Reuse Environment
 A component database capable of storing software

components and the classification information
necessary to retrieve them.

 A library management system that provides access
to the database.

 A software component retrieval system (e.g., an
object request broker) that enables a client
application to retrieve components and services
from the library server.

 CBSE tools that support the integration of reused
components into a new design or implementation.

