
소프트웨어공학 원리
(SEP521)

Software Testing - II

Jongmoon Baik

2

Unit (Component) Testing

• Focus on the smallest software design (module or component)

• Often corresponds to the notion of “compilation unit” from the prog.
Language

• Responsibility: Developer

• Test internal processing logic and data structure within the boundary of a
component

• Can be conducted in parallel for multiple components

• May be necessary to create stubs: “fake” code that replaces called modules
– If not yet implemented, or not yet tested

3

What are tested in Unit Testing?

• Information flows for module interfaces

• Local data structures

• All independent paths (basis path) through control

structure

• Boundary condition

• Error handling paths

4

Unit Test Environment

Test
Cases

Stub Stub Stub

Driver

Module

• Interface

• Local data structure

• Boundary conditions

• Independent paths

• Error handling paths

RESULTS

5

Integration Testing

• Exercise two or more combined units (or components)

• Main objectives:

– Detect interface errors

– Assure the functionalities when combined

• Responsibility: Developers or Testing Group

 Issues
 Integration Strategy (How to Combine?)

 Integration with thirty-party components

 Compatibility, Correctness, etc

6

Integration Testing Strategies

• Non- Incremental Integration

– “Big Bang” approach

• Incremental Approaches

– Top-down Integration

– Bottom-up Integration

– Sandwich Testing

7

“Big Bang” Approach

• All unit tested components are combined at once and tested as
whole

• Disadvantages

– Difficult to correct defects

• Critical and peripheral modules not distinguished

– When errors are corrected, new ones appear : endless loop

• User does not see the product until very late in the development life cycle

CHAOS

8

Top-down Integration

• An Incremental Approach to
construction of the software
architecture

• Integrated by moving
downward through the
control hierarchy
– Depth-First or Breadth-First

• Begins with main control
module (main program)

A

B F I

G

H

C D

E

Depth-First Approach

9

Bottom-up Integration

• Begins construction and
testing with atomic modules
– From components at the lowest

levels in the program structure

• No need for stubs

• Drivers are replaced one at a
time

A

B

E D

G F

I

H

G

C

Clusters

10

Sandwich Integration

• Top level modules are
tested with stubs

• Worker modules are
integrated into clusters

• Advantages:
– Significantly Reduced

number of drivers

– Simplified integration of
clusters

A

B

E D

G F

I

H

G

C

11

Regression Testing

• Re-execution of some subset of tests to see if anything is

broken by a change

– Can be applied to unit, integration, and system testing

• Require automatic test suit to be practical

– Impractical and inefficient to re-execute every test for every program

function once a change has occurred

– Prioritization of test cases (maximize defect detection rate)

• Regression testing is an integral part of the XP software

development methodology

12

Smoke Testing

• Designed as a pacing mechanism for time-critical projects

– Assess its project on a frequent basis

• Analogy to testing electrical circuits:

– plug it in and see if it smokes.

• Main objective:

– to detect “Show Stopper”

• Benefits:

– Minimized integration risks

– Improved quality of the end product

– Simplified error diagnosis and correction

– Easier progress to access

13

How to select a strategic option?

• Depends upon software characteristics and project schedule.

• Identify critical modules and test them as early as possible
– Critical Module’s characteristics:

• Address several software requirements

• Has a high level of control

• Complex and error-prone

• Has definite performance requirements

• Focus on critical module functions in regression tests

14

Validation Testing

• Intended to show that the software meets its requirements.

– Focus on user-visible actions and user-recognizable output from the
system

• A successful test is one that shows that a requirements has
been properly implemented. (Conformity)

• A deviation or error uncovered at this stage can be rarely
corrected prior to scheduled delivery

– Necessary to negotiate with customer to establish a method for
resolving deficiencies

15

Alpha test vs. Beta test

• Alpha test
– Conducted at developers’

site by end-users

– Under a controlled
environment

– is often employed for
off-the-shelf software as
a form of internal
acceptance testing

• Beta test
– Conducted at end-user

sites

– “live application” of the
software in an non-
controlled environment

– available to the open
public to increase the
feedback field to a
maximal number of future
users

16

System Testing

• Test the system's compliance with its specified requirements as
a whole.

– After software is incorporated with other system elements
(e.g.: Hardware, People, Information)

– A series of different tests to fully exercise the computer-based system

• Types of system tests

– Recovery Testing

– Security Testing

– Stress Testing

– Performance Testing

17

Software Testing

WHITE-BOX

TEST

BLACK-BOX

TEST

METHODS

STRATEGIES

18

Black-box test vs. White-box test

Black-box test

• Functional or behavioral
testing

• Conducted at software
interface

• Examines some
fundamental aspect of a
system

• Ignores internal logic of
a software system

White-box test

• Glass-box or structural
testing

• Uses knowledge of the
internal structure of the
software

• Examine procedural
detail (logical paths and
collaboration b/w
components)

19

White-box Test

20

Basis Path Testing

• A white-box testing technique

• Enable to derive a logical complexity measure

of a procedural design

• Provide a guideline defining a basis set of

execution paths

• Guarantee to execute every statement in the

program at once

21

Flow Graph

1

2,3

6

8 7

4,5

9

10

11

Edges (E):

Represent flow of control

Nodes (N):

Represent one or more statements

Regions (R):

Represent areas bounded

by edges and nodes

(includes outside of graph)

Predicate Nodes (P):

Has two or more edges

from it

22

Independent Paths?

• Any path through the program that introduces

at least one new set of processing statements

or a new condition

• Test can be designed to force execution of

these paths (a basis set)

• Guaranteed to execute every statement at least

once

23

Steps to Derive Test Cases

1. Using the design or code as a foundation,

draw a corresponding flow graph

2. Determine the cyclomatic complexity of the

flow graph

3. Determine a basis set of linearly independent

paths

4. Prepare test cases that will force execution of

each path in the basis set

24

Other Control Structure

Testing
• Condition Testing:

– Focus on exercising the logical condition

• Simple and compound condition (s) : Boolean variables or relational

expression

• Data Flow Testing:

– Select test paths of a program according to the location s of definitions

and uses of variables

– Define-Use (DU) testing strategy

• To require that every DU chain be covered at least once

• No guarantee the coverage of all branches of a program

25

Loop Testing

• Focus exclusively on the validity of loop conditions

Simple Loop Nested Loop Concatenated Loop Unstructured Loop

26

Mutation Testing (Fault Injection)

• Test run with mutants which are similar components modified from the

original components

– If the test data reveals the fault in the mutant, kill the mutant

– If not, the tests can not distinguish the original from the mutant

• Develop additional test data to reveal the fault and kill the mutant

Original
Component

Mutant

Test Data Test Data causing Anomalous Behaviors

Test Results Test Results revealing faults

27

Black-box Testing

INPUTS
OUTPUTS

EVENTS

REQUIREMENTS

28

How to Design Black-box tests?

• Questions to be answered for designing tests

– How is functional validity tested?

– How is system behavior and performance tested?

– What classes of input will make good test cases?

– Is the system particularly sensitive to certain input values?

– How are the boundaries of a data class isolated?

– What data rates and data volume can the system tolerate?

– What effect will specific combinations of data have on system
operation?

29

Graph-Based Testing Method

• First Step in Black-box testing
– Understand the objects modeled in software and relationships

among these objects

• Verify all objects have the expected relationship to one another
– Design test cases by traversing the graph and covering all the

relationships to uncover errors

Object
#1

Object
#2

Object
#3

Parallel links

Directed link

(link weight)

Undirected link

Node weight

(value)

New file
menu
select

Document
window

Document
text

Is represented as

Menu select generate

(time < 1.0 sec)

Allows editing of

Contains

Attributes:

Bg_color: white

Fg_color: black

Start_dimension:

default setting

30

Equivalence Partitioning

• Divides the input domain of a program into classes of data

• Based on an evaluation of equivalent classes for an input condition.

– An equivalent class: a set of valid or invalid states for input conditions

• Each of these classes is an equivalence partition where the program
behaves in an equivalent way for each class member

• A guideline (not a rule) to define equivalence classes

– If an input condition specifies a range, define one valid and two invalid
equivalence classes

– If an input condition is Boolean, define one valid and one invalid equivalence
classes

– If an input condition requires specific value, define one valid and two invalid
equivalence classes

– If an input condition specifies a member of set, define one valid and one
invalid equivalence classes

31

Boundary Value Analysis

• Focus on selecting a set of test cases that
exercise bounding values

– Select test cases at the edges of the class

• Complementary to Equivalence Partitioning

• Derive test cases from output domain as well

if (month >= 0 && month < 13)

0 1 12 13 -1 14 ………………………….

32

Orthogonal Array Testing

• Can be used when the number of input

parameters and their values are clearly

bounded

• Support more complete test coverage

Z

X
Y

Z

X
Y

One input items at a time L9 orthogonal array

33

Q & A

