Software Testing — I

Jongmoon Baik

é‘““ﬁ OF s¢, %
g KAIST %

% g=Ru7ies :_-

111111111

« Focus on the smallest software design (module or component)

e Often corresponds to the notion of “compilation unit” from the prog.
Language

« Responsibility: Developer

« Test internal processing logic and data structure within the boundary of a
component

« Can be conducted in parallel for multiple components

* May be necessary to create stubs: “fake” code that replaces called modules
— If not yet implemented, or not yet tested

s Advanced Institute of Selence and Techrology

Y What are tested in Unit Testing?

Information flows for module interfaces

L_ocal data structures

All independent paths (basis path) through control
structure

Boundary condition

Error handling paths

s Advanced Institute of Selence and Techrology

v =

Unit Test Environment

/7 e Interface
Module

| |

* [.ocal data structure

* Boundary conditions
* Independent paths
* Error handling paths

| | Test
» 3 &

KAIST SImirizied 4

Integration Testing

« EXxercise two or more combined units (or components)

« Main objectives:
— Detect interface errors
— Assure the functionalities when combined

» Responsibility: Developers or Testing Group

Issues
m [ntegration Strategy (How to Combine?)

m [ntegration with thirty—party components
Compatibility, Correctness, etc

KAIST SImirizied d

4 Integration Testing Strategies

* Non- Incremental Integration
— “Big Bang” approach

 Incremental Approaches
— Top-down Integration
— Bottom-up Integration
— Sandwich Testing

s Advanced Institute of Selence and Techrology

 All unit tested components are combined at once and tested as
whole

« Disadvantages
— Difficult to correct defects
* Critical and peripheral modules not distinguished

— When errors are corrected, new ones appear : endless loop
 User does not see the product until very late in the development life cycle

\)\ S
e

KAIST SImirizied 1

Depth-First Approach

KAIST ZIZifiies .

 An Incremental Approach to

construction of the software
architecture

Integrated by moving
downward through the
control hierarchy

— Depth—First or Breadth—First

Begins with main control
module (main program)

\4

Bottom—up Integration

Clusters

KAIST ZIZifiies .

Begins construction and
testing with atomic modules

— From components at the lowest
levels in the program structure

No need for stubs

Drivers are replaced one at a
time

Sandwich Integration

 Top level modules are
tested with stubs

« Worker modules are
Integrated Iinto clusters

 Advantages:

— Significantly Reduced
number of drivers

— Simplified integration of
clusters

KAIST SImirizied 10

Regression Testing

» Re-execution of some subset of tests to see if anything is
broken by a change

— Can be applied to unit, integration, and system testing

« Require automatic test suit to be practical

— Impractical and inefficient to re-execute every test for every program
function once a change has occurred

— Prioritization of test cases (maximize defect detection rate)

» Regression testing is an integral part of the XP software
development methodology

KAIST Si=aotziad 11

s Advanced Institute of Selence and Techrology

Smoke Testing

Designed as a pacing mechanism for time-critical projects
— Assess its project on a frequent basis

Analogy to testing electrical circuits:
— plug it in and see if it smokes.

Main objective:
— to detect “Show Stopper”

Benefits:
— Minimized integration risks

— Improved quality of the end product
— Simplified error diagnosis and correction
— Easier progress to access

s Advanced Institute of Selence and Techrology

12

Y How to select a strategic option?

» Depends upon software characteristics and project schedule.

 ldentify critical modules and test them as early as possible

— Critical Module’s characteristics:
» Address several software requirements
» Has a high level of control
« Complex and error-prone
 Has definite performance requirements

 Focus on critical module functions in regression tests

KAIST giRnis7zias 13

s Advanced Institute of Selence and Techrology

Validation Testing

 Intended to show that the software meets its requirements.

— Focus on user-visible actions and user-recognizable output from the
system

A successful test is one that shows that a requirements has
been properly implemented. (Conformity)

« A deviation or error uncovered at this stage can be rarely
corrected prior to scheduled delivery

— Necessary to negotiate with customer to establish a method for
resolving deficiencies

KAIST Si=aotziad 14

s Advanced Institute of Selence and Techrology

Alpha test vs. Beta test

 Alpha test

— Conducted at developers’

site by end—users

— Under a controlled
environment

— is often employed for
off—-the—shelf software as
a form of internal
acceptance testing

s Advanced Institute of Selence and Techrology

Beta test

— Conducted at end—user
sites

— “live application” of the
software in an non-—
controlled environment

— available to the open
public to increase the
feedback field to a
maximal number of future
users

15

System Testing

« Test the system's compliance with its specified requirements as

a whole.

— After software is incorporated with other system elements
(e.g.: Hardware, People, Information)

— A series of different tests to fully exercise the computer-based system

« Types of system tests
— Recovery Testing
— Security Testing
— Stress Testing
— Performance Testing

16

s Advanced Institute of Selence and Techrology

Software Testing

WHITE-BOX BLACK-BOX
TEST TEST

METHODS

KAIST Si=aotziad 17

s Advanced Institute of Selence and Techrology

Black—box test vs. White—box test

Black—box test White—box test
o Functional or behavioral | | Glass—box or structural
testing testing
« Conducted at software « Uses knowledge of the
interface internal structure of the
. Examines some software
fundamental aspect of a||* Examine procedural
system detail (logical paths and
. |gnores internal logic of collaboration b/w
a software system components)

KAIST ti=aozias 18

s Advanced Institute of Selence and Techrology

White=box Test

KAIST ti=aozias 19

s Advanced Institute of Selence and Techrology

Basis Path Testing

A white-box testing technique

« Enable to derive a logical complexity measure
of a procedural design

 Provide a guideline defining a basis set of
execution paths

« Guarantee to execute every statement in the
program at once

s Advanced Institute of Selence and Techrology

20

Edges (E):
Represent flow of control

Has two or more edges
from it

KAIST ZIZifiies .

Regions (R):

by edges and nodes

Represent areas bounded

(includes outside of graph)

Nodes (N):

Represent one or more statements

21

D Independent Paths?

 Any path through the program that introduces
at least one new set of processing statements
or a new condition

 Test can be designed to force execution of
these paths (a basis set)

« Guaranteed to execute every statement at least
once

KAIST Si=aotziad 22

s Advanced Institute of Selence and Techrology

)’ Steps to Derive Test Cases

1. Using the design or code as a foundation,
draw a corresponding flow graph

2. Determine the cyclomatic complexity of the
flow graph

3. Determine a basis set of linearly independent
paths

4. Prepare test cases that will force execution of
each path In the basis set

KAIST giRnis7zias 23

s Advanced Institute of Selence and Techrology

Y Other Control Structure

 Condition Testing:

— Focus on exercising the logical condition

« Simple and compound condition (s) : Boolean variables or relational
expression

« Data Flow Testing:

— Select test paths of a program according to the location s of definitions
and uses of variables

— Define-Use (DU) testing strategy
» To require that every DU chain be covered at least once
» No guarantee the coverage of all branches of a program

KAIST Si=aotziad 24

s Advanced Institute of Selence and Techrology

] l v
v
Simple Loop Nested Loop Concatenated Loop Unstructured Loop

KAIST SImirizied 25

"Mutation Testing (Fault Injection)

« Test run with mutants which are similar components modified from the

original components

— If the test data reveals the fault in the mutant, kill the mutant

— If not, the tests can not distinguish the original from the mutant
« Develop additional test data to reveal the fault and kill the mutant

Test Data Qing Ano

malous Behaviors

Original

Component Mutant

v /
Test Results

ults

KAIST SImari7ied

enca 2nd Techpalogy

26

Black-box Testing

REQUIREMENTS

—_— =
OUTPUTS
> INPUTS

EVENTS

KAIST Si=aotziad 21

s Advanced Institute of Selence and Techrology

" How to Design Black-box tests?

« Questions to be answered for designing tests

— How is functional validity tested?

— How is system behavior and performance tested?

— What classes of input will make good test cases?

— Is the system particularly sensitive to certain input values?
— How are the boundaries of a data class isolated?

— What data rates and data volume can the system tolerate?

— What effect will specific combinations of data have on system
operation?

KAIST ti=aozias 28

s Advanced Institute of Selence and Techrology

Graph—Based Testing Method

Object Directed link
#1 (link weight)

Menu select generate 3
(ttme < 1.0 sec)

Node weight Allows editing
(value) Is represented ontains
Parallel links

* First Step in Black—box testing

— Understand the objects modeled in software and relationships
among these objects

« Verify all objects have the expected relationship to one another

— Design test cases by traversing the graph and covering all the
relationships to uncover errors

Attributes:
Bg_color: white

Undirected link Fg_color: black
Start_dimension:

default setting

KAIST Z=not7ias 29

enca 2nd Techpalogy

\4

Equivalence Partitioning

« Divides the input domain of a program into classes of data
« Based on an evaluation of equivalent classes for an input condition.
— An equivalent class: a set of valid or invalid states for input conditions

» Each of these classes is an equivalence partition where the program
behaves in an equivalent way for each class member

« A guideline (not a rule) to define equivalence classes

If an input condition specifies a range, define one valid and two invalid
equivalence classes

If an input condition is Boolean, define one valid and one invalid equivalence
classes

If an input condition requires specific value, define one valid and two invalid
equivalence classes

If an input condition specifies a member of set, define one valid and one
invalid equivalence classes

KAIST gi=nolzias) 30

a Advanced Inst

nnnnnnnnnnnnnnnnnnnnn

 Focus on selecting a set of test cases that
exercise bounding values
— Select test cases at the edges of the class

« Complementary to Equivalence Partitioning
 Derive test cases from output domain as well

if (month >= 0 && month <13)

« Can be used when the number of input

parameters and their values are clearly
bounded

 Support more complete test coverage
L el
T .
T 00
@ \i./\\

One input items at a time L9 orthogonal array

KAIST ti=aozias 32

s Advanced Institute of Selence and Techrology

KAIST SImirizied 33

