
Introduction to Software Engineering
(CS350)

Jongmoon Baik

Lecture 01

2

Class Information
• Instructor: Jongmoon Baik

– Office: ICT Building B/D #502
– Phone: 042-350-3556/010-4618-5904
– Email: jbaik@kaist.ac.kr
– Office Hour: MON & WED: 10:30AM-12:00PM

(or By Appointment)

• Class Info.
– Class Hours: MON & WED 09:00AM – 10:15AM
– Class Room: ICT Building (N1), Lecture Room 112
– We’ll start on time with any questions and end on time

• Teaching Assistant: Jong-In Jang
– Email: forestar0719@kaist.ac.kr
– Office: N1, Rm. 525 Office Hours: TBA
– Tel: 010-350-7756/010-3736-5844

mailto:jbaik@kaist.ac.kr
mailto:forestar0719@kaist.ac.kr

3

Admin Notes

• Class Website:
– http://spiral.kaist.ac.kr/wp/2016springcs350/
– Announcements: You must check periodically
– All assignments, lecture notes and supplemental

materials are available on Class Schedule

• E-Mail
– Be careful as it does not show other recipients
– Send e-mails with subject line starting with “[CS350]”

http://spiral.kaist.ac.kr/wp/2016springcs350/

4

Text Book & References

• Text Book
– Roger S. Pressman & Bruce Maxim, Software Engineering: A

Practitioner’s Approach, McGraw-Hill, 8th Edition, ISBN-13: 978-
0078022128/ ISBN-10: 0078022126

• References
– Will be provided on class web site

5

Class Schedule

Above schedule is subject to change

6

Grading Policy
• Exams (40%) – Individual work

– Midterm (20%)
– Final (20%)

• Term Project (50%) – Group work
– Assignment reports (20%)
– Final project report and presentation (30%)

• Participation, Attendance & Instructor Judgment (10%)
 Our perception! Not yours…. Ask if you don’t know
 I will call on people randomly at first, not so later
 Be proactive, but don’t just “run the mouth”
 15% absent – Fail

7

Assignments

• Each Assignment: Posted on the Web
• Due: At the beginning of the class on the due

date
• Submission

– Hard copy to T.A at the class
– Email soft copy to T.A. CC to the Instructor

• Late Penalty
– One day (30%), Two days (50%)
– Two days after due date: No Acceptance

8

General Writing Notes

• Must be readable
• PLEASE, 12 pitch font minimum
• Simple font
• 1.5 spacing is nice BUT not mandatory
• Use indentation, bold, etc. as needed
• Spelling and grammar count! (English)
• Must make sense to the reader
“If you don’t like reading it, we won’t either”

9

Citation of Your Source
• Typically one warning, with a reduced grade
• Then 0’s, or fail in class
• If using material verbatim

– Put in quotations with “according to”etc.
– I don’t need full source cite

• According to Jongmoon, “………..”
• or at end of sentence, paragraph, “whitten et. al., pgs.

47-51”

• If in doubt, ask
– Paraphrasing, still state source, but quotations may

not be needed

10

Plagiarism !!!

11

“The Problem”
• From www.academicintegrity.org, in U.S.

– 70% of students admit to some cheating
– 25% admit to cheating on major tests
– 50% on written assignments in past year
– 40% to plagiarizing from the internet
– 77% don’t see this as a “serious issue.”
– 49% admit to unpermitted student collaboration
– Faculty reluctance to be “bad guys.”

• Cheating, copying other work, plagiarism is on the rise in US universities.
• Many students feel that they need to “cheat” in order to be competitive
• Some students have stated that “cheating” is acceptable in some cultures
• Some have stated that plagiarism is a form of flattery

12

What is plagiarism?

• According to the Merriam-Webster Online
Dictionary, to "plagiarize" means
– to steal and pass off (the ideas or words of another)

as one's own
– to use (another's production) without crediting the

source
– to commit literary theft
– to present as new and original an idea or product

derived from an existing source.
• An act of fraud (stealing someone else's work)

13

The Solution

• Professional integrity
• Unlike study, faculty here have no problem

dealing with Plagiarism/Cheating
– No greater offense
– Allowing yourself to be copied…

• Reputation will follow you

14

Software & Software
Engineering

15

What is Software?
Software is: (1) instructions (computer programs) that when
executed provide desired features, function, and performance;
(2) data structures that enable the programs to adequately
manipulate information and (3) documentation that describes
the operation and use of the programs.

Software is a term primarily used for digitally stored data
such as computer programs and other kinds of
information read and written by computers.

http://en.wikipedia.org/wiki/Digitally
http://en.wikipedia.org/wiki/Computer_program

16

Characteristics of Software

• Software is a logical rather than a physical
system element. (Intangible)

• Software is developed or engineered, it is not
manufactured in the classical sense.

• Software doesn't "wear out."
– But, it does deteriorate.

• Although the industry is moving toward
component-based construction, most
software continues to be custom-built.

17

Failure Curves of HW & SW

18

Software Applications

• System software
• Application software
• Engineering/Scientific software
• Embedded software
• Product-line software
• Web/Mobile applications
• AI software (robotics, neural

nets, game playing)

19

Software—New Categories

• Open world computing—pervasive, distributed computing
• Ubiquitous computing—wireless networks
• Netsourcing—the Web as a computing engine
• Open source—”free” source code open to the computing

community (a blessing, but also a potential curse!)
• Also … (see Chapter 31)

– Data mining
– Grid computing
– Cognitive machines
– Software for nanotechnologies

20

Evolution of Legacy Software

– software must be adapted to meet the needs of
new computing environments or technology.

– software must be enhanced to implement new
business requirements.

– software must be extended to make it
interoperable with other more modern systems or
databases.

– software must be re-architected to make it viable
within a network environment.

Why must it change?

21

21

WebApps
 Modern WebApps are much more than hypertext files with a few pict

ures
 WebApps are augmented with tools like XML and Java to allow Web

engineers including interactive computing capability
 WebApps may standalone capability to end users or may be integrat

ed with corporate databases and business applications
 Semantic web technologies (Web 3.0) have evolved into sophisticat

ed corporate and consumer applications that encompass semantic d
atabases that require web linking, flexible data representation, and a
pplication programmer interfaces (API’s) for access

 The aesthetic nature of the content remains an important determina
nt of the quality of a WebApp.

WebApps

22

22

Mobile Apps• Reside on mobile platforms such as cell phones or tablets
• Contain user interfaces that take both device characteristics and

location attributes
• Often provide access to a combination of web-based resources

and local device processing and storage capabilities
• Provide persistent storage capabilities within the platform
• A mobile web application allows a mobile device to access to

web-based content using a browser designed to accommodate
the strengths and weaknesses of the mobile platform

• A mobile app can gain direct access to the hardware found on
the device to provide local processing and storage capabilities

• As time passes these differences will become blurred

Mobile Apps

23

Cloud Computing

Cloud Computing
• Cloud computing provides distributed data storage and processing

resources to networked computing devices
• Computing resources reside outside the cloud and have access to a

variety of resources inside the cloud
• Cloud computing requires developing an architecture containing both

frontend and backend services
• Frontend services include the client devices and application software to

allow access
• Backend services include servers, data storage, and server-resident

applications
• Cloud architectures can be segmented to restrict access to private data

24

Product Line Software
• Product line software is a set of software-intensive

systems that share a common set of features and satisfy
the needs of a particular market

• These software products are developed using the same
application and data architectures using a common core of
reusable software components

• A software product line shares a set of assets that
include requirements, architecture, design patterns,
reusable components, test cases, and other work
products

• A software product line allow in the development of
many products that are engineered by capitalizing
on the commonality among all products with in the
product line

Product Line Software

25

Software Engineering
• Some realities:

– a concerted effort should be made to understand the problem before a
software solution is developed

– design becomes a pivotal activity
– software should exhibit high quality
– software should be maintainable

• [Software engineering is] the establishment and use of sound
engineering principles in order to obtain economically software that
is reliable and works efficiently on real machines. – Fritz Bauer

• The IEEE definition:
– Software Engineering: (1) The application of a systematic, disciplined,

quantifiable approach to the development, operation, and maintenance
of software; that is, the application of engineering to software. (2) The
study of approaches as in (1).

26

A Layered Technology

Software Engineering

a “quality” focus

process model

methods

tools

27

A Process Framework

Process framework
Framework activities

work tasks
work products
milestones &
deliverables
QA checkpoints

Umbrella Activities

28

Activities for A Generic Process Framework

• Communication
• Planning
• Modeling

– Analysis of requirements
– Design

• Construction
– Code generation
– Testing

• Deployment

29

Umbrella Activities

• Software project tracking and control
• Risk management
• Software quality assurance
• Technical reviews
• Measurement
• Software configuration management
• Reusability management
• Work product preparation and

production

30

Adapting a Process Model
 the overall flow of activities, actions, and tasks and the

interdependencies among them
 the degree to which actions and tasks are defined within each

framework activity
 the degree to which work products are identified and required
 the manner which quality assurance activities are applied
 the manner in which project tracking and control activities are

applied
 the overall degree of detail and rigor with which the process is

described
 the degree to which the customer and other stakeholders are

involved with the project
 the level of autonomy given to the software team
 the degree to which team organization and roles are prescribed

31

The Essence of Practice

• George Polya suggests:
1. Understand the problem (communication and

analysis).
2. Plan a solution (modeling and software design).
3. Carry out the plan (code generation).
4. Examine the result for accuracy (testing and quality

assurance).

32

Understand the Problem
• Who has a stake in the solution to the problem?

– That is, who are the stakeholders?
• What are the unknowns?

– What data, functions, and features are required to
properly solve the problem?

• Can the problem be compartmentalized?
– Is it possible to represent smaller problems that may

be easier to understand?
• Can the problem be represented graphically?

– Can an analysis model be created?

33

Plan the Solution

• Have you seen similar problems before?
– Are there patterns that are recognizable in a potential solution?

Is there existing software that implements the data, functions,
and features that are required?

• Has a similar problem been solved?
– If so, are elements of the solution reusable?

• Can sub-problems be defined?
– If so, are solutions readily apparent for the sub-problems?

• Can you represent a solution in a manner that
leads to effective implementation?
– Can a design model be created?

34

Carry Out the Plan

• Does the solution conform to the plan?
– Is source code traceable to the design model?

• Is each component part of the solution
provably correct?
– Has the design and code been reviewed, or

better, have correctness proofs been applied
to algorithm?

35

Examine the Result

• Is it possible to test each component part
of the solution?
– Has a reasonable testing strategy been

implemented?
• Does the solution produce results that

conform to the data, functions, and
features that are required?
– Has the software been validated against all

stakeholder requirements?

36

Hooker’s General Principles

• 1: The Reason It All Exists
• 2: KISS (Keep It Simple, Stupid!)
• 3: Maintain the Vision
• 4: What You Produce, Others Will

Consume
• 5: Be Open to the Future
• 6: Plan Ahead for Reuse
• 7: Think!

37

Software Myths
• Affect managers, customers (and other

non-technical stakeholders) and
practitioners

• Are believable because they often have
elements of truth,

but …
• Invariably lead to bad decisions,
therefore …
• Insist on reality as you navigate your way

through software engineering

38

Management Myths

• We already have a book that’s full of
standards and procedures for building
software. Won’t that provide my people with
everything they need to know?

• If we get behind schedule, we can add more
programmers and catch up (sometimes called
the “Mongolian horde" concept)

• If I decide to outsource the software project to
a third party, I can just relax and let that firm
build it.,

39

Customer Myths

• A general statement of objectives is sufficient
to begin writing programs – we can fill in the
details later.

• Software requirements continually change, but
change can be easily accommodated because
software is flexible.

40

Practitioner’s Myths

• Once we write the program and get it to work,
our job is done.

• Until I get the program “running” I have no
way of assessing its quality.

• The only deliverable work product for a
successful project is the working program.

• Software engineering will make us creative
voluminous and unnecessary documentation
and will iteratively slow us down.

41

1st Assignment

• Fill out the questionnaire and submit it to T.A.
before the next class.

• Organize a team (3-4 people) for your team
project by MAR. 11 (FRI)
– Send team members’ information with your team

name to T.A. (CC to the instructor)

42

Q & A

	Introduction to Software Engineering�(CS350)
	Class Information
	Admin Notes
	Text Book & References
	Class Schedule
	Grading Policy
	Assignments
	General Writing Notes
	Citation of Your Source
	Plagiarism !!!
	“The Problem”
	What is plagiarism?
	The Solution
	Software & Software Engineering
	What is Software?
	Characteristics of Software
	Failure Curves of HW & SW
	Software Applications
	Software—New Categories
	Evolution of Legacy Software
	WebApps
	Mobile Apps
	Cloud Computing
	Product Line Software
	Software Engineering
	A Layered Technology
	A Process Framework
	Activities for A Generic Process Framework
	Umbrella Activities
	Adapting a Process Model
	The Essence of Practice
	Understand the Problem
	Plan the Solution
	Carry Out the Plan
	Examine the Result
	Hooker’s General Principles
	Software Myths
	Management Myths
	Customer Myths
	Practitioner’s Myths
	1st Assignment
	Q & A

