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Class Information
• Instructor: Jongmoon Baik

– Office: ICT Building B/D #502
– Phone: 042-350-3556/010-4618-5904
– Email: jbaik@kaist.ac.kr
– Office Hour: MON & WED: 10:30AM-12:00PM

(or By Appointment)

• Class Info.
– Class Hours: MON & WED 09:00AM – 10:15AM
– Class Room: ICT Building (N1), Lecture Room 112
– We’ll start on time with any questions and end on time

• Teaching Assistant: Jong-In Jang
– Email: forestar0719@kaist.ac.kr
– Office: N1, Rm. 525 Office Hours: TBA
– Tel: 010-350-7756/010-3736-5844

mailto:jbaik@kaist.ac.kr
mailto:forestar0719@kaist.ac.kr
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Admin Notes

• Class Website:
– http://spiral.kaist.ac.kr/wp/2016springcs350/
– Announcements: You must check periodically
– All assignments, lecture notes and supplemental 

materials are available on Class Schedule

• E-Mail
– Be careful as it does not show other recipients
– Send e-mails with subject line starting with “[CS350]”

http://spiral.kaist.ac.kr/wp/2016springcs350/


4

Text Book & References

• Text Book
– Roger S. Pressman & Bruce Maxim, Software Engineering: A 

Practitioner’s Approach, McGraw-Hill, 8th Edition, ISBN-13: 978-
0078022128/ ISBN-10: 0078022126

• References
– Will be provided on class web site
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Class Schedule

Above schedule is subject to change
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Grading Policy
• Exams (40%) – Individual work

– Midterm (20%)
– Final (20%) 

• Term Project (50%) – Group work
– Assignment reports (20%)
– Final project report and presentation (30%)

• Participation, Attendance & Instructor Judgment (10%)
 Our perception! Not yours…. Ask if you don’t know
 I will call on people randomly at first, not so later
 Be proactive, but don’t just “run the mouth”
 15% absent – Fail
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Assignments

• Each Assignment: Posted on the Web
• Due: At the beginning of the class on the due 

date
• Submission

– Hard copy to T.A at the class
– Email soft copy to T.A. CC to the Instructor

• Late Penalty
– One day (30%), Two days (50%)
– Two days after due date: No Acceptance
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General Writing Notes

• Must be readable
• PLEASE, 12 pitch font minimum
• Simple font
• 1.5 spacing is nice BUT not mandatory
• Use indentation, bold, etc. as needed
• Spelling and grammar count! (English)
• Must make sense to the reader
“If you don’t like reading it, we won’t either”
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Citation of Your Source 
• Typically one warning, with a reduced grade
• Then 0’s, or fail in class
• If using material verbatim

– Put in quotations with “according to”etc.
– I don’t need full source cite

• According to Jongmoon, “………..”
• or at end of sentence, paragraph, “whitten et. al., pgs. 

47-51”

• If in doubt, ask
– Paraphrasing, still state source, but quotations may 

not be needed
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Plagiarism !!!
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“The Problem”
• From www.academicintegrity.org, in U.S.

– 70% of students admit to some cheating
– 25% admit to cheating on major tests
– 50% on written assignments in past year
– 40% to plagiarizing from the internet
– 77% don’t see this as a “serious issue.”
– 49% admit to unpermitted student collaboration
– Faculty reluctance to be “bad guys.”

• Cheating, copying other work, plagiarism is on the rise in US universities.
• Many students feel that they need to “cheat” in order to be competitive
• Some students have stated that “cheating” is acceptable in some cultures
• Some have stated that plagiarism is a form of flattery
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What is plagiarism?

• According to the Merriam-Webster Online 
Dictionary, to "plagiarize" means
– to steal and pass off (the ideas or words of another) 

as one's own 
– to use (another's production) without crediting the 

source 
– to commit literary theft 
– to present as new and original an idea or product 

derived from an existing source. 
• An act of fraud (stealing someone else's work)
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The Solution

• Professional integrity
• Unlike study, faculty here have no problem 

dealing with Plagiarism/Cheating
– No greater offense
– Allowing yourself to be copied…

• Reputation will follow you



14

Software & Software 
Engineering
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What is Software?
Software is: (1) instructions (computer programs) that when 
executed provide desired features, function, and performance;  
(2) data structures that enable the programs to adequately 
manipulate information and (3) documentation that describes 
the operation and use of the programs.

Software is a term primarily used for digitally stored data
such as computer programs and other kinds of 
information read and written by computers.

http://en.wikipedia.org/wiki/Digitally
http://en.wikipedia.org/wiki/Computer_program
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Characteristics of Software

• Software is a logical rather than a physical 
system element. (Intangible)

• Software is developed or engineered, it is not 
manufactured in the classical sense.

• Software doesn't "wear out."
– But, it does deteriorate.

• Although the industry is moving toward 
component-based construction, most 
software continues to be custom-built.
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Failure Curves of HW & SW
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Software Applications

• System software
• Application software
• Engineering/Scientific software 
• Embedded software 
• Product-line software
• Web/Mobile applications
• AI software (robotics, neural 

nets, game playing) 
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Software—New Categories

• Open world computing—pervasive, distributed computing
• Ubiquitous computing—wireless networks
• Netsourcing—the Web as a computing engine
• Open source—”free” source code open to the computing 

community (a blessing, but also a potential curse!)
• Also … (see Chapter 31)

– Data mining
– Grid computing
– Cognitive machines
– Software for nanotechnologies
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Evolution of Legacy Software

– software must be adapted to meet the needs of 
new computing environments or technology.

– software must be enhanced to implement new 
business requirements.

– software must be extended to make it 
interoperable with other more modern systems or 
databases.

– software must be re-architected to make it viable 
within a network environment.

Why must it change?



21

21

WebApps
 Modern WebApps are much more than hypertext files with a few pict

ures
 WebApps are augmented with tools like XML and Java to allow Web 

engineers including interactive computing capability
 WebApps may standalone capability to end users or may be integrat

ed with corporate databases and business applications
 Semantic web technologies (Web 3.0) have evolved into sophisticat

ed corporate and consumer applications that encompass semantic d
atabases that require web linking, flexible data representation, and a
pplication programmer interfaces (API’s) for access

 The aesthetic nature of the content remains an important determina
nt of the quality of a WebApp.

WebApps
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Mobile Apps• Reside on mobile platforms such as cell phones or tablets
• Contain user interfaces that take both device characteristics and 

location attributes 
• Often provide access to a combination of web-based resources 

and local device processing and storage capabilities
• Provide persistent storage capabilities within the platform
• A mobile web application allows a mobile device to access to 

web-based content using a browser designed to accommodate 
the strengths and weaknesses of the  mobile platform

• A mobile app can gain direct access to the hardware found on 
the device to provide local processing and storage capabilities

• As time passes these differences will become blurred

Mobile Apps
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Cloud Computing

Cloud Computing
• Cloud computing provides distributed data storage and processing 

resources to networked computing devices
• Computing resources reside outside the cloud and have access to a 

variety of resources inside the cloud
• Cloud computing requires developing an architecture containing both 

frontend and backend services 
• Frontend services include the client devices and application software to 

allow access   
• Backend services include servers, data storage, and server-resident 

applications 
• Cloud architectures can be segmented to restrict access to private data
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Product Line Software
• Product line software is a set of software-intensive 

systems that share a common set of features and satisfy 
the needs of a particular market

• These software products are developed using the same 
application and data architectures using a common core of 
reusable software components

• A software product line shares a set of assets that 
include requirements, architecture, design patterns, 
reusable components, test cases, and other work 
products

• A software product line allow in the development of 
many products that are engineered by capitalizing 
on the commonality among all products with in the 
product line

Product Line Software
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Software Engineering
• Some realities:

– a concerted effort should be made to understand the problem before a 
software solution is developed

– design becomes a pivotal activity
– software should exhibit high quality
– software should be maintainable

• [Software engineering is] the establishment and use of sound 
engineering principles in order to obtain economically software that 
is reliable and works efficiently on real machines. – Fritz Bauer

• The IEEE definition:
– Software Engineering: (1) The application of a systematic, disciplined, 

quantifiable approach to the development, operation, and maintenance
of software; that is, the application of engineering to software.  (2) The 
study of approaches as in (1).
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A Layered Technology

Software Engineering

a “quality” focus

process model

methods

tools
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A Process Framework

Process framework
Framework activities

work tasks
work products
milestones & 
deliverables
QA checkpoints

Umbrella Activities
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Activities for A Generic Process Framework

• Communication
• Planning
• Modeling

– Analysis of requirements
– Design

• Construction
– Code generation
– Testing

• Deployment
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Umbrella Activities

• Software project tracking and control
• Risk management
• Software quality assurance
• Technical reviews
• Measurement
• Software configuration management
• Reusability management
• Work product preparation and 

production
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Adapting a Process Model
 the overall flow of activities, actions, and tasks and the 

interdependencies among them
 the degree to which actions and tasks are defined within each 

framework activity
 the degree to which work products are identified and required
 the manner which quality assurance activities are applied
 the manner in which project tracking and control activities are 

applied
 the overall degree of detail and rigor with which the process is 

described
 the degree to which the customer and other stakeholders are 

involved with the project
 the level of autonomy given to the software team
 the degree to which team organization and roles are prescribed
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The Essence of Practice

• George Polya suggests:
1. Understand the problem (communication and 

analysis).
2. Plan a solution (modeling and software design).
3. Carry out the plan (code generation).
4. Examine the result for accuracy (testing and quality 

assurance).
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Understand the Problem
• Who has a stake in the solution to the problem?

– That is, who are the stakeholders?
• What are the unknowns?

– What data, functions, and features are required to 
properly solve the problem?

• Can the problem be compartmentalized?
– Is it possible to represent smaller problems that may 

be easier to understand?
• Can the problem be represented graphically?

– Can an analysis model be created?
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Plan the Solution

• Have you seen similar problems before?
– Are there patterns that are recognizable in a potential solution? 

Is there existing software that implements the data, functions, 
and features that are required? 

• Has a similar problem been solved?
– If so, are elements of the solution reusable?

• Can sub-problems be defined?
– If so, are solutions readily apparent for the sub-problems?

• Can you represent a solution in a manner that 
leads to effective implementation? 
– Can a design model be created?
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Carry Out the Plan

• Does the solution conform to the plan?
– Is source code traceable to the design model?

• Is each component part of the solution 
provably correct?
– Has the design and code been reviewed, or 

better, have correctness proofs been applied 
to algorithm?



35

Examine the Result

• Is it possible to test each component part 
of the solution?
– Has a reasonable testing strategy been 

implemented?
• Does the solution produce results that 

conform to the data, functions, and 
features that are required?
– Has the software been validated against all 

stakeholder requirements?
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Hooker’s General Principles

• 1: The Reason It All Exists
• 2: KISS (Keep It Simple, Stupid!)
• 3: Maintain the Vision
• 4: What You Produce, Others Will 

Consume
• 5: Be Open to the Future 
• 6: Plan Ahead for Reuse
• 7: Think!
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Software Myths
• Affect managers, customers (and other 

non-technical stakeholders) and 
practitioners

• Are believable because they often have 
elements of truth, 

but …
• Invariably lead to bad decisions, 
therefore …
• Insist on reality as you navigate your way 

through software engineering
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Management Myths

• We already have a book that’s full of 
standards and procedures for building 
software. Won’t that provide my people with 
everything they need to know?

• If we get behind schedule, we can add more 
programmers and catch up (sometimes called 
the “Mongolian horde" concept)

• If I decide to outsource the software project to 
a third party, I can just relax and let that firm 
build it.,
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Customer Myths

• A general statement of objectives is sufficient 
to begin writing programs – we can fill in the 
details later.

• Software requirements continually change, but 
change can be easily accommodated because 
software is flexible.
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Practitioner’s Myths

• Once we write the program and get it to work, 
our job is done.

• Until I get the program “running” I have no 
way of assessing its quality.

• The only deliverable work product for a 
successful project is the working program.

• Software engineering will make us creative 
voluminous and unnecessary documentation 
and will iteratively slow us down.
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1st Assignment

• Fill out the questionnaire and submit it to T.A. 
before the next class.

• Organize a team (3-4 people) for your team 
project by MAR. 11 (FRI)
– Send team members’ information with your team 

name to T.A. (CC to the instructor) 
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Q & A
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