Introduction to Software Engineering (CS350)

Lecture 01

Class Information

- Instructor: Jongmoon Baik
 - Office: ICT Building B/D #502
 - Phone: 042-350-3556/010-4618-5904
 - Email: jbaik@kaist.ac.kr
 - Office Hour: MON & WED: 10:30AM-12:00PM

(or By Appointment)

- Class Info.
 - Class Hours: MON & WED 09:00AM 10:15AM
 - Class Room: ICT Building (N1), Lecture Room 112
 - We'll start on time with any questions and end on time
- Teaching Assistant: Jong-In Jang
 - Email: forestar0719@kaist.ac.kr
 - Office: N1, Rm. 525 Office Hours: TBA
 - Tel: 010-350-7756/010-3736-5844

Admin Notes

- Class Website:
 - http://spiral.kaist.ac.kr/wp/2016springcs350/
 - Announcements: You must check periodically
 - All assignments, lecture notes and supplemental materials are available on Class Schedule

- E-Mail
 - Be careful as it does not show other recipients
 - Send e-mails with subject line starting with "[CS350]"

Text Book & References

<u>Text Book</u>

 Roger S. Pressman & Bruce Maxim, Software Engineering: A Practitioner's Approach, McGraw-Hill, 8th Edition, ISBN-13: 978-0078022128/_ISBN-10: 0078022126

<u>References</u>

- Will be provided on class web site

Class Schedule

Weeke	Day₽	Topicℯ	Reading 🖉
1₽	3/2₽	 Course Overview & Process Modelse 	Ch. 1-2
	3/7₽	 Agile Development 	Ch. 2₽
2 ₽	3/9₽	 Estimation for Software Projectse 	Ch. 26₽
	3/14₽	 Project Mgmt. & Scheduling	Ch. 24 & 27₽
3₽	3/16₽	- Software Risk Mgmt.↩	Ch. 28₽
	3/21₽	- SW Eng. Principles₽	Ch. 4₽
4₽	3/23₽	 Understanding Requirements. 	Ch. 5₽
	3/28₽	 Requirement Modeling Ie 	Ch. 6₽
5₽	3/30₽	 Requirement Modeling II 	Ch. 7₽
	4/4₽	- Design Concept₽	Ch. 8₽
6⊷	4/6⊷	- Architectural Design₽	Ch. 9₽
	4/11↩	 Conceptual Level Design 	Ch. 10₽
7⊷	4/13₽	 National Holiday (The legislative election) 	e.
	4/18↩	 SW Configuration Mgmt. 	Ch. 22₽
8 ₽	4/20₽ 4/25₽	Mid-term EXAM.	ø
9 ,2	4/27₽	 Quality Concepts - 	Ch. 14₽
	5/2₽	 Software Quality Assurance. 	Ch. 16₽
10₽	5/4₽	 Review Techniques	Ch. 15₽
	5/9₽	 Review Techniques 	Ch. 15₽
11₽	5/11₽	 SW Testing Strategy- 	Ch. 17₽
	5/16₽	 Testing Conventional Applications. 	Ch. 18₽
12₽	5/18₽	 Testing OO Applications. 	Ch. 19₽
	5/23₽	 Formal Modeling and Verification. 	Ch. 21₽
13₽	5/25₽	- Software M&M - I∉	Ch. 23₽
	5/30₽	- Software M&M - II∉	Ch. 25₽
14₽	6/1₽	 Maintenance & Re-Engineeringe 	Ch. 29₽
	6/6₽	 National Holiday (Memorial Day) 	e.
15₽	6/8₽	 Software Process Improvemente 	Ch. 30₽
	6/13₽	EOSP(End-Of-Semester Presentation)	e.
16₽	6/15↩ 6/21↩		4

Above schedule is subject to change

Grading Policy

• Exams (40%) – Individual work

- Midterm (20%)
- Final (20%)

• Term Project (50%) – Group work

- Assignment reports (20%)
- Final project report and presentation (30%)

• Participation, Attendance & Instructor Judgment (10%)

- ✓ Our perception! Not yours.... Ask if you don't know
- \checkmark I will call on people randomly at first, not so later
- \checkmark Be proactive, but don't just "run the mouth"
- ✓ 15% absent Fail

Assignments

- Each Assignment: Posted on the Web
- Due: At the beginning of the class on the due date
- Submission
 - Hard copy to T.A at the class
 - Email soft copy to T.A. CC to the Instructor
- Late Penalty
 - One day (30%), Two days (50%)
 - Two days after due date: No Acceptance

General Writing Notes

- Must be readable
- PLEASE, 12 pitch font minimum
- Simple font
- 1.5 spacing is nice **BUT** not mandatory
- Use indentation, bold, etc. as needed
- Spelling and grammar count! (English)
- Must make sense to the reader

"If you don't like reading it, we won't either"

Citation of Your Source

- Typically one warning, with a reduced grade
- Then 0's, or fail in class
- If using material verbatim
 - Put in quotations with "according to"etc.
 - I don't need full source cite
 - According to Jongmoon, "……"
 - or at end of sentence, paragraph, "whitten et. al., pgs. 47-51"
- If in doubt, ask
 - Paraphrasing, still state source, but quotations may not be needed

Plagiarism !!!

"The Problem"

- From www.academicintegrity.org, in U.S.
 - 70% of students admit to some cheating
 - 25% admit to cheating on major tests
 - 50% on written assignments in past year
 - 40% to plagiarizing from the internet
 - 77% don't see this as a "serious issue."
 - 49% admit to unpermitted student collaboration
 - Faculty reluctance to be "bad guys."
- Cheating, copying other work, plagiarism is on the rise in US universities.
- Many students feel that they need to "cheat" in order to be competitive
- Some students have stated that "cheating" is acceptable in some cultures
- Some have stated that plagiarism is a form of flattery

What is plagiarism?

- According to the Merriam-Webster Online Dictionary, to "plagiarize" means
 - to steal and pass off (the ideas or words of another) as one's own
 - to use (another's production) without crediting the source
 - to commit literary theft
 - to present as new and original an idea or product derived from an existing source.
- An act of fraud (stealing someone else's work)

The Solution

- Professional integrity
- Unlike study, faculty here have no problem dealing with Plagiarism/Cheating
 - No greater offense
 - Allowing yourself to be copied...
- Reputation will follow you

Software & Software Engineering

What is Software?

Software is: (1) instructions (computer programs) that when executed provide desired features, function, and performance; (2) data structures that enable the programs to adequately manipulate information and (3) documentation that describes the operation and use of the programs.

Software is a term primarily used for <u>digitally</u> stored *data* such as <u>computer programs</u> and other kinds of information read and written by computers.

Characteristics of Software

- Software is a logical rather than a physical system element. (Intangible)
- Software is developed or engineered, it is not manufactured in the classical sense.
- Software doesn't "wear out."
 - But, it does deteriorate.
- Although the industry is moving toward component-based construction, most software continues to be custom-built.

Failure Curves of HW & SW

Software Applications

- System software
- Application software
- Engineering/Scientific software
- Embedded software
- Product-line software
- Web/Mobile applications
- AI software (robotics, neural nets, game playing)

Software—New Categories

- Open world computing—pervasive, distributed computing
- Ubiquitous computing—wireless networks
- Netsourcing—the Web as a computing engine
- Open source—"free" source code open to the computing community (a blessing, but also a potential curse!)
- Also ... (see Chapter 31)
 - Data mining
 - Grid computing
 - Cognitive machines
 - Software for nanotechnologies

Evolution of Legacy Software

Why must it change?

- software must be adapted to meet the needs of new computing environments or technology.
- software must be enhanced to implement new business requirements.
- software must be extended to make it interoperable with other more modern systems or databases.
- software must be re-architected to make it viable within a network environment.

WebApps

- Modern WebApps are much more than hypertext files with a few pict ures
- WebApps are augmented with tools like XML and Java to allow Web engineers including interactive computing capability
- WebApps may standalone capability to end users or may be integrat ed with corporate databases and business applications
- Semantic web technologies (Web 3.0) have evolved into sophisticat ed corporate and consumer applications that encompass semantic d atabases that require web linking, flexible data representation, and a pplication programmer interfaces (API's) for access
 - The aesthetic nature of the content remains an important determina nt of the quality of a WebApp.

Mobile Apps

- Reside on mobile platforms such as cell phones or tablets
- Contain user interfaces that take both device characteristics and location attributes
- Often provide access to a combination of web-based resources and local device processing and storage capabilities
- Provide persistent storage capabilities within the platform
- A *mobile web application* allows a mobile device to access to web-based content using a browser designed to accommodate the strengths and weaknesses of the mobile platform
- A *mobile app* can gain direct access to the hardware found on the device to provide local processing and storage capabilities
- As time passes these differences will become blurred

Cloud Computing

- *Cloud computing* provides distributed data storage and processing resources to networked computing devices
- Computing resources reside outside the cloud and have access to a variety of resources inside the cloud
- Cloud computing requires developing an architecture containing both frontend and backend services
- Frontend services include the client devices and application software to allow access
- Backend services include servers, data storage, and server-resident applications
- Cloud architectures can be segmented to restrict access to private data

Product Line Software

- *Product line software* is a set of software-intensive systems that share a common set of features and satisfy the needs of a particular market
- These software products are developed using the same application and data architectures using a common core of reusable software components
- A software product line shares a set of assets that include requirements, architecture, design patterns, reusable components, test cases, and other work products
- A software product line allow in the development of many products that are engineered by capitalizing on the commonality among all products with in the product line

Software Engineering

- Some realities:
 - a concerted effort should be made to understand the problem before a software solution is developed
 - design becomes a pivotal activity
 - software should exhibit high quality
 - software should be maintainable
- [Software engineering is] the establishment and use of sound engineering principles in order to obtain economically software that is reliable and works efficiently on real machines. – Fritz Bauer
- The IEEE definition:
 - Software Engineering: (1) The application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software; that is, the application of engineering to software. (2) The study of approaches as in (1).

A Layered Technology

Software Engineering

A Process Framework

Process framework Framework activities work tasks work products milestones & deliverables QA checkpoints **Umbrella Activities**

Activities for A Generic Process Framework

- Communication
- Planning
- Modeling
 - Analysis of requirements
 - Design
- Construction
 - Code generation
 - Testing
- Deployment

Umbrella Activities

- Software project tracking and control
- Risk management
- Software quality assurance
- Technical reviews
- Measurement
- Software configuration management
- Reusability management
- Work product preparation and production

Adapting a Process Model

- the overall flow of activities, actions, and tasks and the interdependencies among them
- the degree to which actions and tasks are defined within each framework activity
- the degree to which work products are identified and required
- ➤ the manner which quality assurance activities are applied
- the manner in which project tracking and control activities are applied
- the overall degree of detail and rigor with which the process is described
- the degree to which the customer and other stakeholders are involved with the project
- the level of autonomy given to the software team
- > the degree to which team organization and roles are prescribed

The Essence of Practice

- George Polya suggests:
 - 1. Understand the problem (communication and analysis).
 - 2. Plan a solution (modeling and software design).
 - 3. Carry out the plan (code generation).
 - 4. Examine the result for accuracy (testing and quality assurance).

Understand the Problem

- Who has a stake in the solution to the problem?
 - That is, who are the stakeholders?
- What are the unknowns?
 - What data, functions, and features are required to properly solve the problem?
- Can the problem be compartmentalized?
 - Is it possible to represent smaller problems that may be easier to understand?
- Can the problem be represented graphically?
 - Can an analysis model be created?

Plan the Solution

• Have you seen similar problems before?

- Are there patterns that are recognizable in a potential solution? Is there existing software that implements the data, functions, and features that are required?
- Has a similar problem been solved?
 - If so, are elements of the solution reusable?
- Can sub-problems be defined?
 - If so, are solutions readily apparent for the sub-problems?
- Can you represent a solution in a manner that leads to effective implementation?
 - Can a design model be created?

Carry Out the Plan

- Does the solution conform to the plan?
 - Is source code traceable to the design model?
- Is each component part of the solution provably correct?
 - Has the design and code been reviewed, or better, have correctness proofs been applied to algorithm?

Examine the Result

- Is it possible to test each component part of the solution?
 - Has a reasonable testing strategy been implemented?
- Does the solution produce results that conform to the data, functions, and features that are required?
 - Has the software been validated against all stakeholder requirements?

Hooker's General Principles

- 1: The Reason It All Exists
- 2: KISS (Keep It Simple, Stupid!)
- 3: Maintain the Vision
- 4: What You Produce, Others Will Consume
- 5: Be Open to the Future
- 6: Plan Ahead for Reuse
- 7: Think!

Software Myths

- Affect managers, customers (and other non-technical stakeholders) and practitioners
- Are believable because they often have elements of truth,

but ...

• Invariably lead to bad decisions,

therefore ...

• Insist on reality as you navigate your way through software engineering

Management Myths

- We already have a book that's full of standards and procedures for building software. Won't that provide my people with everything they need to know?
- If we get behind schedule, we can add more programmers and catch up (sometimes called the "Mongolian horde" concept)
- If I decide to outsource the software project to a third party, I can just relax and let that firm build it.,

Customer Myths

- A general statement of objectives is sufficient to begin writing programs – we can fill in the details later.
- Software requirements continually change, but change can be easily accommodated because software is flexible.

Practitioner's Myths

- Once we write the program and get it to work, our job is done.
- Until I get the program "running" I have no way of assessing its quality.
- The only deliverable work product for a successful project is the working program.
- Software engineering will make us creative voluminous and unnecessary documentation and will iteratively slow us down.

1st Assignment

• Fill out the questionnaire and submit it to T.A. before the next class.

- Organize a team (3-4 people) for your team project by MAR. 11 (FRI)
 - Send team members' information with your team name to T.A. (CC to the instructor)

