Introduction to Software Engiﬁ&i‘iﬁg

(CS350) ”
Lecture 03

Jongmoon Baik

111111111

Estimation for Soltware
Projects

) Soitware Project Planning

The overall goal of project planning is to
establish a pragmatic strategy for
controlling, tracking, and monitoring a
complex technical project.

Why?
So the end result gets done on time,
with quality!

a Advanced Institute of Sclenca and Techrology

9 Project Planning Task Set-I

 Establish project scope
e Determine feasibility

e Analyze risks

» Define required resources
— Determine required human resources

— Define reusable software resources
— ldentify environmental resources

a Advanced Institute of Sclenca and Techrology

Project Planning Task Set-II

» Estimate cost and effort
— Decompose the problem

— Develop two or more estimates using size, function
noints, process tasks or use-cases

— Reconcile the estimates
* Develop a project schedule

— Scheduling is considered in detail in Chapter 27.
 Establish a meaningful task set

* Define a task network
» Use scheduling tools to develop a timeline chart
 Define schedule tracking mechanisms

a Advanced Institute of Sclenca and Techrology

Wrlte it Down!

PIOJECIISCOPE
E=ESTIIUES

RISKS

SCHEUUIE:
Canlirol Siirziicie)y

KAIST Z=mo7ied p

Korea Advanced Institule of Sclenca

9~ To Understand Scope ...

« Understand the customers needs
 Understand the business context

« Understand the project boundaries

» Understand the customer’s motivation
« Understand the likely paths for change
« Understand that ...

t
t
t
t
t
t

Even when you understand,
nothing is guaranteed!!

a Advanced Institute of Sclenca and Techrology

)’ What is Scope?

« Software scope describes

— the functions and features that are to be delivered to end-
users

— the data that are input and output

— the “content” that is presented to users as a conseguence of
using the software

— the performance, constraints, interfaces, and reliability that
bound the system.

« Scope is defined using one of two techniques:

« “A narrative description of software scope is developed
after communication with all stakeholders”.

» “A set of use-cases iIs developed by end-users”.

a Advanced Institute of Sclenca and Techrology

Resources

hardware

network
resources

eople)
0 P P environment

project

reusable
software

oTS
components

new
components

full-experience
components

part.-experience
components

KAIST gi=aot7iasd 9

Korea Advanced insiitule of Sclence and Technolagy

Project scope must be understood

Elaboration (decomposition) is
necessary

Historical metrics are very
helpful

At least two different techniques
should be used

Uncertainty Is inherent in the
process

KAIST fImatiZied

10

" Software Estimation Techni

Software Estimation Techniques

ues

Model-Based

ExpertBased

Lea raing-Oricnted

Dynamics-Based

Regression-Based

Composite

1

' ™
SLIM, Jenzen, Bailey-
Basili's,
COZOMO, Gulezian's,
Checkpaint, Price-3,
Softoost, ESTIMACS,
SERR-SEM

. A

A 4

Meural Metwrarks, Caze-
bazed reazoning

Delphi, Fula-bazed
systems, WES

E(}E, Robust Regrassion

Detailed COCOMD, Price-5,
System Dynamics Approach

\ 4

(Bayesian Approach]

KAIST ti=nst7ziasl

Korea Advanced Institule of Sclence and Technology

11

Estimation Accuracy

 Predicated on ...

— the the size estimate into human effort,
calendar time, and dollars (a function of the availability of
reliable software metrics from past projects)

— the degree to which the project plan reflects the

— the and the environment
that supports the software engineering effort.

KAIST =2nc7ias 12

a Advanced Institute of Sclenca and Techrology

/W Estimation Accuracy vs. Phase

Corn of Software Cost Estimation”

4x

2X

1.5x

Relative 1.25x

Size X
Range

0.5x

0.25x

Completed W size (DSI)

Programs + Cost ($)
USAF/ESD
Proposals

Product Detail
Concept of Rqts. Design Design Accepted
Operation Spec. Software
A " A Spc- SPEC- A
Feasibility Plans Product Detail Devel.
and Design Design and

RAts. phases and Milestones Test

e Estimation carries inherent risk and this risk leads to uncertainty

KAIST SImnri7ied

enca 2nd Techpalogy

13

Functional Decomposition

Functional
Decomposition

Perform a

Grammatical “parse”
/l\

KAIST E=ac7ias 14

enca 2nd Techpalogy

Mzing Methods

e Source Lines of Code (SLOC)

— SEI Definition Check List

« Unadjusted Function Points (UFP)

- IFPUG

KAIST 2zU%7Ies 15

a Advanced Institute of Sclenca and Techrology

source Lines of Code

e Best Source : Historical data form previous projects
e Expert-Judged Lines of Code

» Expressed in thousands of source lines of code
(KSLOC)

 Difficult Definition — Different Languages

 Logical Source Statement

— SEI Source Lines of Code Check List

— Excludes COTS, GFS, other products, language support libraries and
operating systems, or other commercial libraries

KAIST 2zU%7Ies 16

a Advanced Institute of Sclenca and Techrology

Drefinition narme:

Definition Checklist for Source Statements Counts

fhasic definition)

LDgiEEIJ SOUrce Sratem ents Dare:

Originator, COCoMO 1]

Measurement unit: Physical source lines

Logical source statements o«

Statement type Definition | Data Array Includes |[Excludes
Wrhern g line or staternent cordains mmore than one Bibe,
classify it as the tvpe with the hghe st precegsnce.
1 Executable Order of precedence: 1 +
2 Monexecutahle
3 Declarations 2 o
4 Compiler directives 3 +
5 Comments
& N their ownlines 4 +
Aon lines with source code 5 +
8 BEanners and non-blank spacers [+
4 Elank (empty) commernts 7 <
10 Elark lines] o
How produced Definition |+ Data array Includes |Excludes
1 Programmed +
2 Generated with source code generators +
3 Cormverted with autom ated translators +
4 Caopied or reused without change +
5 Modified +
& Remowved <
Origin Definition |+ Data array Includes |Excludes
1 Mew work: no prior existence +
2 Prior work: taken or adapted from
3 A previous wersion, build, or release +
4 Commerdial, offthe-shelf software (2OTS), atherthan librares o
5 Covernment fumished software (GFS), other than reuse libraries +
& Another product -+
7 Aovendor—supplied language support library (unmodified) 4
8 Avendor—supplied operating system or wtility {unrmodified) +
4 Alocal or modified language support librany or operating system o«
10 Cther commercial libramy 4
11 & reuse library (software designed for reuse) <
12 COther software componert or librany 4
Usage Definition |+ Data array Includes |Excludes

KAIST oi=aolziss)

Korea Advanced insiitule of Sclence and Technolagy

17

Unadjusted Function Points - I

« Based on the amount of functionality in a

software project and a set of individual project
factors.

o Useful since they are based on information that
Is available early in the project life-cycle.

* Measure a software project by quantifying the
Information processing functionality
assoclated with major external data or control
Input, output, or file types.

KAIST Z3aci7ies 18

a Advanced Institute of Sclenca and Techrology

Unadjusted Function Points - 11

Step 1. Determine function counts by type. The unadjusted function point counts should be counted by a lead technical person based on

information in the software requirements and design documents. The number of each the five user function types should be counted
(Internal Logical File (ILF), External Interface File (EIF), External Input (El), External Output (EO), and External Inquiry (EQ)).

Step 2. Determine complexity-level function counts. Classify each function count into Low, Average, and High complexity levels
depending on the number of data element types contained and the number of file types reference. Use the following scheme.

For ILF and EIF For EO and EQ For El
Record Data Elements File Types Data Elements File Types Data Elements
Elements 1-19 20-50 51+ 1-5 6-19 20+ 1-4 5-15 16+
1 Low Low Avg Oorl Low Low Avg Oorl Low Low Avg
2-5 Low Avg High 2-3 Low Avg High 2-3 Low Avg High
6+ Avg High High 4+ Avg High High 4+ Avg High High

Step 3. Apply complexity weights. Weight the number in each cell using the following scheme. The weight reflect the relative value of

the function to the user.

Function Type Complexity Weight
Low Average High
Internal Logical File (ILF) 7 10 15
External Interface Files (EIF) 5 7 10
External Inputs (EI) 3 4 6
External Outputs 4 5 7
External Inquiries 3 4 6

Step 4. Compute Unadjusted Function Points. Add all the weight functions counts to get one number, the Unadjusted Function Points.

SoPyTgnT® < '
KAIST S=uerzias) U ZUUJ RNAIS | 1Y 19

Korea Advanced insiitule of Sclence and Technolagy

Mzing Methods: LOC/FP Approach

o compute LOC/FP using estimates
of information domain values

e use historical data to build
estimates for the project

KAIST 2zU%7Ies 20

a Advanced Institute of Sclenca and Techrology

"’ Example: LOC Approach

Functon Estimated LW
nser interface and conteol facilities (LTICE) 2300
baro-dirnensional gectoetric snalysis (20 0G4) K300
thres-ditnensional yectnetric analrsis (2D G4) &,800
databaze managernent (DEK) 3,380
coroputer graphics display faeilities (OGDE) 4 9K
peripheral cortrol (B 2 100
desism analysis rodules (DAT) 8,400
edfieaded fnes of sode EERALL

Average productivity for systems of this type = 620 LOC/pm.

Burdened labor rate =$8000 per month, the cost per line of code is
approximately $13.

Based on the LOC estimate and the historical productivity data, the total
estimated project cost is

a Advanced Institute of Sclenca and Techrology

ast.
Informeation Donadn Value opt. Hhkdy pess ount welght FP-coung
rrober of inputs 20 24 20 24 4 =1
nirober of cutputs 13 15 P 1 L Té
nrnber of inguiries 1 22 e 22 a =
nirober of files 4 4 & 4 10 42
nirober of external interfaces 2 2 3 2 T 15
count-total 321

The estimated number of FP is derived:

FP.qimaes = COUNt _total x[0.65+0.01x > (F;)] =375

organizational average productivity = 6.5 FP/pm.
burdened labor rate = $8000 per month, approximately $1230/FP.
Based on the FP estimate and the historical productivity data,

a Advanced Institute of Sclenca and Techrology

22

Process-Based Estimation

Obtained from “process framework”

\

framework activities

KAIST 2zU%7Ies 23

a Advanced Institute of Sclenca and Techrology

v Process-Based Estimation Example

—) c ,
Activity cC Planning Anlgﬁ/ksis Engineering OIgZItél;gtelon CE Totals
Task —»» analysis | design code test
Function
Y
UICF 050 | 250 | 040 | 500 | n/a 8.40
2DGA 0.75 | 400 | 060 | 200 | n/a 7.35
3DGA 050 | 400 | 1.00 | 3.00 | n/a 8.50
CGDF 050 | 300 [.00 | 150 | n/a 6.00
DSM 050 | 3.00 | 0.75 | 150 | ma [575
PCF 025 [200 [050 | 150 | Wa | 4.25
DAM 050 | 200 | 050 | 200 | Wa [500
Totals 0.25 0.25 0.25 350 |20.50 | 450 |[16.50 46.00
% effort

CC = customer communication CE = customer evaluation

Based on an average burdened labor rate of $8,000 per month,

KAIST S=W%7IEee 24

Korea Advanced insiitule of Sclence and Technolagy

Tool-Based Estimation

Project Characteristics i

Calibration Factors s

LOC/FP data wesipe

KAIST 2zU%7Ies 25

a Advanced Institute of Sclenca and Techrology

use cases scenarios pages|Escenarios pages LOC LOC estimate

User interface subsystem 6 10 6 12 S 560 3,366
Engineering subsystem group 10 20 8 16 8 3100 31,233
Infrastructure subsystem group 5 6 5 10 6 1650 7.970
Total LOC estimate I? I? E

E E E 42,568

Using 620 LOC/pm as the average productivity for systems of this type
and a burdened labor rate of $8000 per month, the cost per line of code

is approximately $13. Based on the use-case estimate and the historical
productivity data,

KAIST 2zU%7Ies 26

a Advanced Institute of Sclenca and Techrology

¥ Empirical Estimation Models

General form:

exponent

effort = tuning coefficient * size

usually derived
as person-months
of effort required

empirically
derived

usually LOC but
may also be
function point

either a constant or
a number derived based
on complexity of project

KAIST g=ac7ias) 21

Korea Advanced Institule of Sclence and Technology

& cocoMo-m

« COCOMO Il is actually a hierarchy of
estimation models that address the following
areas:

Used during the early
stages of software engineering, when prototyping of
user interfaces, consideration of software and system
Interaction, assessment of performance, and evaluation
of technology maturity are paramount.

Used once requirements have
been stabilized and basic software architecture has been
established.

Used during the
construction of the software.

KAIST Z3aa7ies 28

a Advanced Institute of Sclenca and Techrology

The Sofiware Equation

A dynamic multivariable model

where
E = effort in person-months or person-years
t = project duration in months or years
B = “special skills factor”
P = “productivity parameter”

KAIST 2zU%7Ies 29

a Advanced Institute of Sclenca and Techrology

« Develop estimates using effort decomposition, FP
analysis, and any other method that is applicable for
conventional applications.

« Using object-oriented requirements modeling
(Chapter 6), develop use-cases and determine a
count.

e From the analysis model, determine the number of
key classes (called analysis classes in Chapter 6).

« (Categorize the type of interface for the application
and develop a multiplier for support classes:

— Interface type Multiplier
— No GUI 2.0
— Text-based user interface 2.25
- GUI 2.5
— Complex GUI 3.0

KAIST Z3aa7ies 30

a Advanced Institute of Sclenca and Techrology

Estimation for 00 Projects-II

 Multiply the number of key classes (step 3) by the
multiplier to obtain an estimate for the number of

support classes.

« Multiply the total number of classes (key + support)
by the average number of work-units per class.
Lorenz and Kidd suggest 15 to 20 person-days per
class.

* Cross check the class-based estimate by multiplying
the average number of work-units per use-case

KAIST 2zU%7Ies 3

a Advanced Institute of Sclenca and Techrology

ecls

« Each user scenario (a mini-use-case) is considered separately for
estimation purposes.

* The scenario is decomposed into the set of software engineering tasks that
will be required to develop it.

» Each task is estimated separately. Note: estimation can be based on
historical data, an empirical model, or “experience.”

Estimation for Agile Pro

e Estimates for each task are summed to create an estimate for the scenario.

» The effort estimates for all scenarios that are to be implemented for a
given software increment are summed to develop the effort estimate for
the increment.

KAIST 2zU%7Ies 32

a Advanced Institute of Sclenca and Techrology

* The Make-Buy Decision

slmple (0.30) $380,000
e $450,000

bulld difficult (0.70)
. $275,000

minor changes

(0.40)
reuse
system X $310,000
simple (0.20)
major
changes

(0.60) complex (0.80) $490,000
minor changes $210,000

contract (0.70
$400,000

major changes (0.30)

without changes (0.60) $350,000

$500,000
with changes (0.40)

KAIST Ei=itizied 33

a Advanced Institute of Sclenca and Techrology

Computing Expected Cost

(Qziif) probablll'ty)] (2stimaizd pain cosi)

For example, the expected cost to build is:

expected costbuild = 0.30 ($380K) + 0.70 ($450K)

= $429 K
similarly,

KAIST 2zU%7Ies 34

a Advanced Institute of Sclenca and Techrology

KAIST fImatiZied 3

	Introduction to Software Engineering�(CS350)
	Estimation for Software Projects
	Software Project Planning
	Project Planning Task Set-I
	Project Planning Task Set-II
	Write it Down!
	To Understand Scope ...
	What is Scope?
	Resources
	Software Project Estimation
	Software Estimation Techniques
	Estimation Accuracy
	S/W Estimation Accuracy vs. Phase
	Functional Decomposition
	Sizing Methods
	Source Lines of Code
	SEI Source Lines of Code Checklist
	Unadjusted Function Points - I
	Unadjusted Function Points - II
	Sizing Methods: LOC/FP Approach
	Example: LOC Approach
	Example: FP Approach
	Process-Based Estimation
	Process-Based Estimation Example
	Tool-Based Estimation
	Estimation with Use-Cases
	Empirical Estimation Models
	COCOMO-II
	The Software Equation
	Estimation for OO Projects-I
	Estimation for OO Projects-II
	Estimation for Agile Projects
	The Make-Buy Decision
	Computing Expected Cost
	Q & A

