
Introduction to Software Engineering
(CS350)

Jongmoon Baik

Lecture 04

2

Project Mgmt. &
Scheduling

3

The Four P’s

• People — the most important element
of a successful project

• Product — the software to be built
• Process — the set of framework

activities and software engineering
tasks to get the job done

• Project — all work required to make
the product a reality

4

Stakeholders

• Senior managers who define the business issues that often
have significant influence on the project.

• Project (technical) managers who must plan, motivate,
organize, and control the practitioners who do software work.

• Practitioners who deliver the technical skills that are
necessary to engineer a product or application.

• Customers who specify the requirements for the software to
be engineered and other stakeholders who have a peripheral
interest in the outcome.

• End-users who interact with the software once it is released
for production use.

5

Software Teams

How to lead?
How to organize?

How to motivate?

How to collaborate?

How to create good ideas?

6

Team Leader
• The MOI Model of leadership

– Motivation. The ability to encourage (by “push or
pull”) technical people to produce to their best
ability.

– Organization. The ability to mold existing
processes (or invent new ones) that will enable the
initial concept to be translated into a final product.

– Ideas or innovation. The ability to encourage
people to create and feel creative even when they
must work within bounds established for a
particular software product or application.

Jerry Weinberg, 1986

7

Software Teams

• Difficulty of the problem to be solved
• Size of the resultant program(s) in lines of code or function

points
• Time that the team will stay together (team lifetime)
• Degree to which the problem can be modularized
• Required quality and reliability of the system to be built
• Rigidity of the delivery date
• Degree of sociability (communication) required for the project

The following factors must be considered when
selecting a software project team structure ...

8

1. Closed paradigm—structures a team along a traditional
hierarchy of authority

2. Random paradigm—structures a team loosely and depends
on individual initiative of the team members

3. Open paradigm—attempts to structure a team in a manner
that achieves some of the controls associated with the closed
paradigm but also much of the innovation that occurs when
using the random paradigm

4. Synchronous paradigm—relies on the natural
compartmentalization of a problem and organizes team
members to work on pieces of the problem with little active
communication among themselves

Organizational Paradigms

suggested by Constantine [Con93]

9

Avoid Team “Toxicity”

• A frenzied work atmosphere in which team members waste
energy and lose focus on the objectives of the work to be
performed.

• High frustration caused by personal, business, or technological
factors that cause friction among team members.

• “Fragmented or poorly coordinated procedures” or a poorly
defined or improperly chosen process model that becomes a
roadblock to accomplishment.

• Unclear definition of roles resulting in a lack of accountability
and resultant finger-pointing.

• “Continuous and repeated exposure to failure” that leads to a
loss of confidence and a lowering of morale.

10

Agile Teams
• To perform a high-performance team

– Team members must have trust in one another.
– The distribution of skills must be appropriate to the

problem.
– Mavericks may have to be excluded from the team, if team

cohesiveness is to be maintained.
• Team is “self-organizing”

– An adaptive team structure
– Uses elements of Constantine’s random, open, and

synchronous paradigms
– Significant autonomy

• allowed to select its own approach (e.g. process, methods, tools)

11

Team Coordination & Communication

• Formal, impersonal approaches include software engineering documents
and work products (including source code), technical memos, project
milestones, schedules, and project control tools (Chapter 23), change
requests and related documentation, error tracking reports, and repository
data (see Chapter 26).

• Formal, interpersonal procedures focus on quality assurance activities
(Chapter 25) applied to software engineering work products. These include
status review meetings and design and code inspections.

• Informal, interpersonal procedures include group meetings for information
dissemination and problem solving and “collocation of requirements and
development staff.”

• Electronic communication encompasses electronic mail, electronic bulletin
boards, and by extension, video-based conferencing systems.

• Interpersonal networking includes informal discussions with team
members and those outside the project who may have experience or insight
that can assist team members.

12

The Product Scope
• Scope

• Context. How does the software to be built fit into a larger system,
product, or business context and what constraints are imposed as a
result of the context?

• Information objectives. What customer-visible data objects
(Chapter 8) are produced as output from the software? What data
objects are required for input?

• Function and performance. What function does the software
perform to transform input data into output? Are any special
performance characteristics to be addressed?

• Software project scope must be unambiguous and
understandable at the management and technical
levels.

13

Problem Decomposition

• Sometimes called partitioning or problem
elaboration

• Once scope is defined …
– It is decomposed into constituent functions
– It is decomposed into user-visible data objects
or
– It is decomposed into a set of problem classes

• Decomposition process continues until all
functions or problem classes have been defined

14

The Process

• Once a process framework has been
established
– Consider project characteristics
– Determine the degree of rigor required
– Define a task set for each software engineering

activity
• Task set =

– Software engineering tasks
– Work products
– Quality assurance points
– Milestones

15

Melding the Problem and the Process

16

The Project

• Projects get into trouble when …
– Software people don’t understand their customer’s needs.
– The product scope is poorly defined.
– Changes are managed poorly.
– The chosen technology changes.
– Business needs change [or are ill-defined].
– Deadlines are unrealistic.
– Users are resistant.
– Sponsorship is lost [or was never properly obtained].
– The project team lacks people with appropriate skills.
– Managers [and practitioners] avoid best practices and lessons learned.

17

Common-Sense Approach to Projects

1. Start on the right foot. This is accomplished by working hard (very hard)
to understand the problem that is to be solved and then setting realistic
objectives and expectations.

2. Maintain momentum. The project manager must provide incentives to
keep turnover of personnel to an absolute minimum, the team should
emphasize quality in every task it performs, and senior management
should do everything possible to stay out of the team’s way.

3. Track progress. For a software project, progress is tracked as work
products (e.g., models, source code, sets of test cases) are produced and
approved (using formal technical reviews) as part of a quality assurance
activity.

4. Make smart decisions. In essence, the decisions of the project manager
and the software team should be to “keep it simple.”

5. Conduct a postmortem analysis. Establish a consistent mechanism for
extracting lessons learned for each project.

18

To Get to the Essence of a Project

• Why is the system being developed?
• What will be done?
• When will it be done?
• Who is responsible for a function?
• Where are they located organizationally?
• How will the job be done technically and

managerially?
• How much of each resource (e.g., people,

software, tools, database) will be needed?
Barry Boehm [Boe96]

19

Critical Practices

• Formal risk management
• Empirical cost and schedule estimation
• Metrics-based project management
• Earned value tracking
• Defect tracking against quality targets
• People aware project management

20

Why Are Projects Late?
• an unrealistic deadline established by someone outside the

software development group
• changing customer requirements that are not reflected in

schedule changes;
• an honest underestimate of the amount of effort and/or the

number of resources that will be required to do the job;
• predictable and/or unpredictable risks that were not considered

when the project commenced;
• technical difficulties that could not have been foreseen in

advance;
• human difficulties that could not have been foreseen in

advance;
• miscommunication among project staff that results in delays;
• a failure by project management to recognize that the project is

falling behind schedule and a lack of action to correct the
problem

21

Scheduling Principles
• Compartmentalization : Partition into a number of manageable

activities and tasks; Refine both process and product

• Interdependency: Determine the inter-relationships among the
compartmentalized tasks and activities

• Time allocation: Allocate some number of work units to each task;
Assign a start and a completion time

• Effort validation: Ensure that no more than the allocated number of
people has been scheduled as any given time

• Defined responsibilities: Assign every task to a specific team
member

• Defined outcomes: Define an outcome (work product) for every task

• Defined milestones: Review work products for quality and then
approved

22

Effort and Delivery Time

Effort
Cost

Impossible
region

td

Ed

Tmin = 0.75T d

to

Eo

Ea = m (td
4 / ta

4)

development time

Ea = effort in person-months

td = nominal delivery time for schedule

to = optimal development time (in terms of cost)
ta = actual delivery time desired

23

Effort Allocation

• “front end” activities
– customer communication
– analysis
– design
– review and modification

• construction activities
– coding or code generation

• testing and installation
– unit, integration
– white-box, black box
– regression

40-50%

30-40%

15-20%

24

Defining Task Sets

• Determine type of project
• Assess the degree of rigor required
• Identify adaptation criteria
• Select appropriate software engineering tasks

25

Task Set Refinement

1.1 Concept scoping determines the overall scope of the
project.

Task definition: Task 1.1 Concept Scoping

1.1.1 Identify need, benefits and potential customers;

1.1.2 Define desired output/control and input events that drive the application;

Begin Task 1.1.2

1.1.2.1 FTR: Review written description of need
FTR indicates that a formal technical review (Chapter 26) is to be conducted.

1.1.2.2 Derive a list of customer visible outputs/inputs

1.1.2.3 FTR: Review outputs/inputs with customer and revise as required;

endtask Task 1.1.2

1.1.3 Define the functionality/behavior for each major function;

Begin Task 1.1.3

1.1.3.1 FTR: Review output and input data objects derived in task 1.1.2;

1.1.3.2 Derive a model of functions/behaviors;

1.1.3.3 FTR: Review functions/behaviors with customer and revise as
required;

endtask Task 1.1.3

1.1.4 Isolate those elements of the technology to be implemented in software;

1.1.5 Research availability of existing software;

1.1.6 Define technical feasibility;

1.1.7 Make quick estimate of size;

1.1.8 Create a Scope Definition;
endTask definition: Task 1.1

is refined to

26

Define a Task Network
Activity Network or PERT

27

Timeline Charts (Gantt Chart)

Tasks Week 1 Week 2 Week 3 Week 4 Week n

Task 1
Task 2
Task 3
Task4
Task 5
Task 6
Task 7
Task 8
Task 9
Task 10
Task 11
Task 12

28

Use Automated Tools to Derive a Timeline Chart

29

Schedule Tracking
• Conduct periodic project status meetings in which each team

member reports progress and problems.
• Evaluate the results of all reviews conducted throughout the

software engineering process.
• Determine whether formal project milestones have been

accomplished by the scheduled date.
• Compare actual start-date to planned start-date for each

project task listed in the resource table.
• Meet informally with practitioners to obtain their subjective

assessment of progress to date and problems on the horizon.
• Use earned value analysis to assess progress quantitatively.

30

Earned Value Analysis (EVA)

• Earned value
– is a measure of progress
– enables us to assess the “percent of completeness”

of a project using quantitative analysis rather than
rely on a gut feeling

– “provides accurate and reliable readings of
performance from as early as 15 percent into the
project.” [Fle98]

31

Computing Earned Value-I

• The budgeted cost of work scheduled (BCWS) is
determined for each work task represented in the
schedule.
– BCWSi is the effort planned for work task i.
– To determine progress at a given point along the project

schedule, the value of BCWS is the sum of the BCWSi
values for all work tasks that should have been completed
by that point in time on the project schedule.

• The BCWS values for all work tasks are summed to
derive the budget at completion, BAC. Hence,

BAC = ∑ (BCWSk) for all tasks k

32

Computing Earned Value-II

• Next, the value for budgeted cost of work performed
(BCWP) is computed.
– The value for BCWP is the sum of the BCWS values for all work

tasks that have actually been completed by a point in time on the
project schedule.

• “the distinction between the BCWS and the BCWP is that
the former represents the budget of the activities that were
planned to be completed and the latter represents the budget
of the activities that actually were completed.” [Wil99]

• Given values for BCWS, BAC, and BCWP, important
progress indicators can be computed:

• Schedule performance index, SPI = BCWP/BCWS
• Schedule variance, SV = BCWP – BCWS
• SPI is an indication of the efficiency with which the project is utilizing

scheduled resources.

33

Computing Earned Value-III

• Percent scheduled for completion = BCWS/BAC
– provides an indication of the percentage of work that should have been

completed by time t.

• Percent complete = BCWP/BAC
– provides a quantitative indication of the percent of completeness of the

project at a given point in time, t.
• Actual cost of work performed, ACWP, is the sum of the

effort actually expended on work tasks that have been
completed by a point in time on the project schedule. It is then
possible to compute

• Cost performance index, CPI = BCWP/ACWP
• Cost variance, CV = BCWP – ACWP

34

Q & A

	Introduction to Software Engineering�(CS350)
	Project Mgmt. & Scheduling
	The Four P’s
	Stakeholders
	Software Teams
	Team Leader
	Software Teams
	Organizational Paradigms
	 Avoid Team “Toxicity”
	Agile Teams
	Team Coordination & Communication
	The Product Scope
	Problem Decomposition
	The Process
	Melding the Problem and the Process
	The Project
	Common-Sense Approach to Projects
	To Get to the Essence of a Project
	Critical Practices
	Why Are Projects Late?
	Scheduling Principles
	Effort and Delivery Time
	Effort Allocation
	Defining Task Sets
	Task Set Refinement
	Define a Task Network
	Timeline Charts (Gantt Chart)
	Use Automated Tools to Derive a Timeline Chart
	Schedule Tracking
	Earned Value Analysis (EVA)
	Computing Earned Value-I
	Computing Earned Value-II
	Computing Earned Value-III
	Q & A

