
Introduction to Software Engineering
(CS350)

Jongmoon Baik

Lecture 07

2

Requirement Modeling - I
Scenarios, Information, and Analysis Classes

3

Requirements Analysis

• Requirements analysis
– specifies software’s operational characteristics
– indicates software's interface with other system elements
– establishes constraints that software must meet

• Requirements analysis allows the software engineer (called an
analyst or modeler in this role) to:
– elaborate on basic requirements established during earlier requirement

engineering tasks
– build models that depict user scenarios, functional activities, problem

classes and their relationships, system and class behavior, and the flow
of data as it is transformed.

4

A Bridge

System
Description

Design
ModelAnalysis Model

5

Rules of Thumb

• The model should focus on requirements that are visible
within the problem or business domain. The level of
abstraction should be relatively high.

• Each element of the analysis model should add to an overall
understanding of software requirements and provide insight
into the information domain, function and behavior of the
system.

• Delay consideration of infrastructure and other non-
functional models until design.

• Minimize coupling throughout the system.
• Be certain that the analysis model provides value to all

stakeholders.
• Keep the model as simple as it can be.

6

Domain Analysis

Software domain analysis is the identification, analysis, and
specification of common requirements from a specific
application domain, typically for reuse on multiple projects
within that application domain . . . [Object-oriented domain
analysis is] the identification, analysis, and specification of
common, reusable capabilities within a specific application
domain, in terms of common objects, classes,
subassemblies, and frameworks . . .

Donald Firesmith

7

Domain Analysis

• Define the domain to be investigated.
• Collect a representative sample of

applications in the domain.
• Analyze each application in the sample.
• Develop an analysis model for the objects.

8

Elements of Requirements Analysis

9

Scenario-Based Modeling

“[Use-cases] are simply an aid to defining
what exists outside the system (actors) and
what should be performed by the system
(use-cases).” Ivar Jacobson

(1) What should we write about?

(2) How much should we write about it?

(3) How detailed should we make our description?

(4) How should we organize the description?

10

What to Write About?

• Inception and elicitation—provide you with the
information you’ll need to begin writing use cases.

• Requirements gathering meetings, QFD, and other
requirements engineering mechanisms are used to
– identify stakeholders
– define the scope of the problem
– specify overall operational goals
– establish priorities
– outline all known functional requirements, and
– describe the things (objects) that will be manipulated by the

system.
• To begin developing a set of use cases, list the functions

or activities performed by a specific actor.

11

How Much to Write About?

• As further conversations with the
stakeholders progress, the requirements
gathering team develops use cases for
each of the functions noted.

• In general, use cases are written first in an
informal narrative fashion.

• If more formality is required, the same use
case is rewritten using a structured format
similar to the one proposed.

12

Use-Cases

• a scenario that describes a “thread of usage” for
a system

• actors represent roles people or devices play as
the system functions

• users can play a number of different roles for a
given scenario

13

Developing a Use-Case

• What are the main tasks or functions that are
performed by the actor?

• What system information will the actor acquire,
produce or change?

• Will the actor have to inform the system about
changes in the external environment?

• What information does the actor desire from the
system?

• Does the actor wish to be informed about unexpected
changes?

14

Use-Case Diagram

homeowner

Access camera
surveillance via the

Internet

Conf igure SafeHome
system parameters

Set alarm

cameras

SafeHome

15

Activity Diagram

enter password
and user ID

select major funct ion

valid passwor ds/ ID

prompt for reent ry

invalid passwor ds/ ID

input t r ies r em ain

no input
t r ies r em ain

select surveillance

ot her f unct ions
m ay also be

select ed

t hum bnail views select a specif ic cam er a

select camera icon

prompt for
another v iew

select specif ic
camera - thumbnails

exit t his f unct ion see anot her cam er a

view camera output
in labelled window

Supplements the
use case by
providing a
graphical
representation of
the flow of
interaction within a
specific scenario

16

Swimlane Diagrams
Allows the modeler to
represent the flow of
activities described by the
use-case and at the same
time indicate which actor (if
there are multiple actors
involved in a specific use-
case) or analysis class has
responsibility for the action
described by an activity
rectangle

enter password
and user ID

select m ajor funct ion

valid p asswo r d s/ ID

prom pt for reent ry

in valid
p asswo r d s/ ID

in p u t t r ies
r em ain

n o in p u t
t r ies r em ain

select surveillance

o t h er f u n ct io n s
m ay also b e

select ed

t h u m b n ail views select a sp ecif ic cam er a

select cam era icon

generate v ideo
output

select specif ic
cam era - thum bnails

exit t h is
f u n ct io n

see
an o t h er
cam er a

h o m e o w n e r c a m e ra i n t e rf a c e

prom pt for
another v iew

view cam era output
in labelled window

17

Data Modeling

• examines data objects independently of
processing

• focuses attention on the data domain
• creates a model at the customer’s level of

abstraction
• indicates how data objects relate to one another

18

What is a Data Object?
• a representation of almost any composite information that must be

understood by software.
– composite information—something that has a number of different

properties or attributes
• can be an external entity (e.g., anything that produces or consumes

information), a thing (e.g., a report or a display), an occurrence (e.g.,
a telephone call) or event (e.g., an alarm), a role (e.g., salesperson),
an organizational unit (e.g., accounting department), a place (e.g., a
warehouse), or a structure (e.g., a file).

• The description of the data object incorporates the data object and
all of its attributes.

• A data object encapsulates data only—there is no reference within a
data object to operations that act on the data.

19

Data Objects and Attributes

A data object contains a set of attributes that act as an aspect,
quality, characteristic, or descriptor of the object

object: automobile

attributes:
make
model
body type
price
options code

20

What is a Relationship?

• Data objects are connected to one another in
different ways.
– A connection is established between person and car

because the two objects are related.
• A person owns a car
• A person is insured to drive a car

• The relationships owns and insured to drive
define the relevant connections between person
and car.

• Several instances of a relationship can exist
• Objects can be related in many different ways

21

ERD Notation

(0, m) (1, 1)

object objectrelationship
1 2

One common form:

(0, m)

(1, 1)

object
1

object
2

relationship

Another common form:

attribute

22

Building an ERD

• Level 1—model all data objects (entities) and
their “connections” to one another

• Level 2—model all entities and relationships
• Level 3—model all entities, relationships, and

the attributes that provide further depth

23

The ERD: An Example

(1,1) (1,m)
placesCustomer

request
for service

generates
(1,n)

(1,1)

work
order

work
tasks

materials

consists
of

lists

(1,1)
(1,w)

(1,1)

(1,i)

selected
from

standard
task table

(1,w)

(1,1)

24

Class-Based Modeling

• Class-based modeling represents:
– objects that the system will manipulate
– operations (also called methods or services) that will

be applied to the objects to effect the manipulation
– relationships (some hierarchical) between the objects
– collaborations that occur between the classes that are

defined.

• The elements of a class-based model include
classes and objects, attributes, operations, CRC
models, collaboration diagrams and packages.

25

Identifying Analysis Classes

• Examining the usage scenarios developed as
part of the requirements model and perform a
"grammatical parse" [Abb83]
– Classes are determined by underlining each noun or

noun phrase and entering it into a simple table.
– Synonyms should be noted.
– If the class (noun) is required to implement a solution,

then it is part of the solution space; otherwise, if a
class is necessary only to describe a solution, it is
part of the problem space.

• But what should we look for once all of the
nouns have been isolated?

26

Manifestations of Analysis Classes

• Analysis classes manifest themselves in one of the following ways:
• External entities (e.g., other systems, devices, people) that produce or

consume information
• Things (e.g, reports, displays, letters, signals) that are part of the

information domain for the problem
• Occurrences or events (e.g., a property transfer or the completion of a

series of robot movements) that occur within the context of system
operation

• Roles (e.g., manager, engineer, salesperson) played by people who
interact with the system

• Organizational units (e.g., division, group, team) that are relevant to an
application

• Places (e.g., manufacturing floor or loading dock) that establish the
context of the problem and the overall function

• Structures (e.g., sensors, four-wheeled vehicles, or computers) that define
a class of objects or related classes of objects

27

Potential Classes
• Retained information. The potential class will be useful during analysis only

if information about it must be remembered so that the system can function.
• Needed services. The potential class must have a set of identifiable

operations that can change the value of its attributes in some way.
• Multiple attributes. During requirement analysis, the focus should be on

"major" information; a class with a single attribute may, in fact, be useful
during design, but is probably better represented as an attribute of another
class during the analysis activity.

• Common attributes. A set of attributes can be defined for the potential class
and these attributes apply to all instances of the class.

• Common operations. A set of operations can be defined for the potential
class and these operations apply to all instances of the class.

• Essential requirements. External entities that appear in the problem space
and produce or consume information essential to the operation of any
solution for the system will almost always be defined as classes in the
requirements model.

28

Defining Attributes

• Attributes describe a class that has been
selected for inclusion in the analysis
model.
– build two different classes for professional

baseball players
• For Playing Statistics software: name, position,

batting average, fielding percentage, years played,
and games played might be relevant

• For Pension Fund software: average salary,
credit toward full vesting, pension plan options
chosen, mailing address, and the like.

29

Defining Operations

• Do a grammatical parse of a processing
narrative and look at the verbs

• Operations can be divided into four broad
categories:
– (1) operations that manipulate data in some way (e.g.,

adding, deleting, reformatting, selecting)
– (2) operations that perform a computation
– (3) operations that inquire about the state of an

object, and
– (4) operations that monitor an object for the

occurrence of a controlling event.

30

Class Diagram

SYSTEM

systemID
verificationPhoneNumber
systemStatus
dalayTime
telephoneNumber
masterPassword
temporaryPassword
numberTries

program()
display()
reset()
query()
arm()
disarm()

31

CRC Models

• Class-Responsibility-Collaborator (CRC)
modeling [Wir90] provides a simple means for
identifying and organizing the classes that are
relevant to system or product requirements.
Ambler [Amb95] describes CRC modeling in the
following way:
– A CRC model is really a collection of standard index

cards that represent classes. The cards are divided
into three sections. Along the top of the card you write
the name of the class. In the body of the card you list
the class responsibilities on the left and the
collaborators on the right.

32

CRC Modeling

Class:
Description:

Responsibility: Collaborator:

Class:
Description:

Responsibility: Collaborator:

Class:
Description:

Responsibility: Collaborator:

Class: FloorPlan
Description:

Responsibility: Collaborator:

incorporates walls, doors and windows

shows position of video cameras

defines floor plan name/type

manages floor plan positioning

scales floor plan for display
scales floor plan for display

Wall

Camera

33

Class Types

• Entity classes, also called model or business classes, are
extracted directly from the statement of the problem (e.g.,
FloorPlan and Sensor).

• Boundary classes are used to create the interface (e.g.,
interactive screen or printed reports) that the user sees and
interacts with as the software is used.

• Controller classes manage a “unit of work” [UML03] from start
to finish. That is, controller classes can be designed to manage
– the creation or update of entity objects;
– the instantiation of boundary objects as they obtain information from

entity objects;
– complex communication between sets of objects;
– validation of data communicated between objects or between the user

and the application.

34

Guidelines for Allocating Responsibilities

• System intelligence should be distributed across
classes to best address the needs of the problem

• Each responsibility should be stated as generally as
possible

• Information and the behavior related to it should
reside within the same class

• Information about one thing should be localized with
a single class, not distributed across multiple classes.

• Responsibilities should be shared among related
classes, when appropriate.

35

Collaborations

• Classes fulfill their responsibilities in one of two ways:
– A class can use its own operations to manipulate its own attributes,

thereby fulfilling a particular responsibility, or
– a class can collaborate with other classes.

• Collaborations identify relationships between classes
• Collaborations are identified by determining whether a class

can fulfill each responsibility itself
• three different generic relationships between classes [WIR90]:

– the is-part-of relationship
– the has-knowledge-of relationship
– the depends-upon relationship

36

Composite Aggregate Class

Player

PlayerHead PlayerArms PlayerLegsPlayerBody

37

Associations and Dependencies

• Two analysis classes are often related to one another
in some fashion
– In UML these relationships are called associations
– Associations can be refined by indicating multiplicity (the

term cardinality is used in data modeling

• In many instances, a client-server relationship exists
between two analysis classes.
– In such cases, a client-class depends on the server-class in

some way and a dependency relationship is established

38

Multiplicity

WallSegm ent Window Door

Wall

is used to buildis used to build

is used to build1..*

1 1 1

0..* 0..*

39

Dependencies

CameraDisplayWindow

{password}

<<access>>

40

Analysis Packages

• Various elements of the analysis model (e.g., use-
cases, analysis classes) are categorized in a manner
that packages them as a grouping

• The plus sign preceding the analysis class name in
each package indicates that the classes have public
visibility and are therefore accessible from other
packages.

• Other symbols can precede an element within a
package. A minus sign indicates that an element is
hidden from all other packages and a # symbol
indicates that an element is accessible only to
packages contained within a given package.

41

Analysis Packages
Environment

+Tree

+Landscape

+Road

+Wall

+Bridge

+Building

+VisualEffect

+Scene

Characters

+Player

+Protagonist

+Antagonist

+SupportingRole

RulesOfTheGame

+RulesOfMovement

+ConstraintsOnAction

package name

42

Q & A

	Introduction to Software Engineering�(CS350)
	Requirement Modeling - I� Scenarios, Information, and Analysis Classes
	Requirements Analysis
	A Bridge
	Rules of Thumb
	Domain Analysis
	Domain Analysis
	Elements of Requirements Analysis
	Scenario-Based Modeling
	What to Write About?
	How Much to Write About?
	Use-Cases
	Developing a Use-Case
	Use-Case Diagram
	Activity Diagram
	Swimlane Diagrams
	Data Modeling
	What is a Data Object?
	Data Objects and Attributes
	What is a Relationship?
	ERD Notation
	Building an ERD
	The ERD: An Example
	Class-Based Modeling
	Identifying Analysis Classes
	Manifestations of Analysis Classes
	Potential Classes
	Defining Attributes
	Defining Operations
	Class Diagram
	CRC Models
	CRC Modeling
	Class Types
	Guidelines for Allocating Responsibilities
	Collaborations
	Composite Aggregate Class
	Associations and Dependencies
	Multiplicity
	Dependencies
	Analysis Packages
	Analysis Packages
	Q & A

