
Introduction to Software Engineering
(CS350)

Jongmoon Baik

Lecture 08

2

Requirement Modeling - II
Flow, Behavior, Patterns, and Webapps

3

Requirements Modeling Strategies

• structured analysis
– considers data and the processes that transform the

data as separate entities.
• Data objects are modeled in a way that defines their attributes and

relationships.
• Processes that manipulate data objects are modeled in a manner

that shows how they transform data as data objects flow through
the system.

• object-oriented analysis
– focuses on

• the definition of classes and
• the manner in which they collaborate with one another to effect

customer requirements.

4

Flow-Oriented Modeling

• Represents how data objects are transformed at
they move through the system

• Data Flow Diagram (DFD) is the diagrammatic
form that is used
– Considered by many to be an “old school” approach
– But continues to provide a view of the system that is

unique
– It should be used to supplement other analysis model

elements

5

The Flow Model

Every computer-based system is an
information transform

computer
based
system

input output

6

Flow Modeling Notation

external entity

process

data flow

data store

7

External Entity

A producer or consumer of data

Examples: a person, a device, a sensor

Another example: computer-based
system

Data must always originate somewhere
and must always be sent to something

8

Process

A data transformer (changes input
to output)

Examples: compute taxes, determine area,
format report, display graph

Data must always be processed in some
way to achieve system function

9

Data Flow

Data flows through a system, beginning
as input and transformed into output.

compute
triangle

area

base

height

area

10

Data Stores

Data is often stored for later use.

look-up
sensor
data

sensor #

report required

sensor #, type,
location, age

sensor data

sensor number

type,
location, age

11

Data Flow Diagramming: Guidelines

• all icons must be labeled with meaningful
names

• the DFD evolves through a number of levels
of detail

• always begin with a context level diagram
(also called level 0)

• always show external entities at level 0
• always label data flow arrows
• do not represent procedural logic

12

Constructing a DFD—I

• review user scenarios and/or the data
model to isolate data objects and use a
grammatical parse to determine
“operations”

• determine external entities (producers
and consumers of data)

• create a level 0 DFD

13

Level 0 DFD Example

user
processing

request

video
source NTSC

video signal

digital
video

processor

requested
video
signal

monitor

14

Constructing a DFD—II

• write a narrative describing the transform
• parse to determine next level transforms
• “balance” the flow to maintain data flow

continuity
• develop a level 1 DFD
• use a 1:5 (approx.) expansion ratio

15

The Data Flow Hierarchy

P
a b

x y

p1

p2

p3

p4 5

a

b

c

d

e

f

g

level 0

level 1

16

Flow Modeling Notes

• each bubble is refined until it does just one
thing

• the expansion ratio decreases as the number of
levels increase

• most systems require between 3 and 7 levels
for an adequate flow model

• a single data flow item (arrow) may be
expanded as levels increase (data dictionary
provides information)

17

Process Specification (PSPEC)

PSPEC
narrative
pseudocode (PDL)
equations
tables
diagrams and/or charts

bubble

18

Maps into

DFDs: A Look Ahead

analysis model

design model

19

Control Flow Modeling

• Represents “events” and the processes that
manage events

• An “event” is a Boolean condition that can be
ascertained by:

• listing all sensors that are "read" by the software.
• listing all interrupt conditions.
• listing all "switches" that are actuated by an operator.
• listing all data conditions.
• recalling the noun/verb parse that was applied to the

processing narrative, review all "control items" as
possible CSPEC inputs/outputs.

20

Control Specification (CSPEC)

The CSPEC can be:

state diagram
(sequential spec)

state transition table

decision tables

activation tables

combinatorial spec

21

Behavioral Modeling

• The behavioral model indicates how software will respond to
external events or stimuli. To create the model, the analyst
must perform the following steps:

• Evaluate all use-cases to fully understand the sequence of interaction
within the system.

• Identify events that drive the interaction sequence and understand how
these events relate to specific objects.

• Create a sequence for each use-case.
• Build a state diagram for the system.
• Review the behavioral model to verify accuracy and consistency.

22

State Representations

• In the context of behavioral modeling, two different
characterizations of states must be considered:
– the state of each class as the system performs its function

and
– the state of the system as observed from the outside as the

system performs its function
• The state of a class takes on both passive and active

characteristics [CHA93].
– A passive state is simply the current status of all of an

object’s attributes.
– The active state of an object indicates the current status of

the object as it undergoes a continuing transformation or
processing.

23

State Diagram for the ControlPanel Class

reading

locked

select ing

password
ent ered

comparing

password = incorrect
& numberOfTries < maxTries

password = correct

act ivat ion successful

key hit

do: validat ePassword

numberOfTries > maxTries

t imer < lockedTime

t imer > lockedTime

24

The States of a System

• state—a set of observable circum-stances that
characterizes the behavior of a system at a
given time

• state transition—the movement from one
state to another

• event—an occurrence that causes the system
to exhibit some predictable form of behavior

• action—process that occurs as a consequence
of making a transition

25

Behavioral Modeling

• make a list of the different states of a system
(How does the system behave?)

• indicate how the system makes a transition
from one state to another (How does the
system change state?)
– indicate event
– indicate action

• draw a state diagram or a sequence diagram

26

Sequence Diagram
homeowner cont ro l panel sensorssyst em sensors

syst em
ready

reading

request lookup
comparing

result

password ent ered

password = correct
request act ivat ion

act ivat ion successfu l

locked
num berOfTries > m axTries

select ing

t imer > lockedTimeA

A

Figure 8 .2 7 Sequence diagram (part ial) f or Saf eHome securit y f unct ion

act ivat ion successfu l

27

Writing the Software Specification

Everyone knew exactly
what had to be done
until someone wrote it
down!

28

Patterns for Requirements Modeling

• Software patterns are a mechanism for capturing domain
knowledge in a way that allows it to be reapplied when a
new problem is encountered
– domain knowledge can be applied to a new problem within the

same application domain
– the domain knowledge captured by a pattern can be applied by

analogy to a completely different application domain.

• The original author of an analysis pattern does not
“create” the pattern, but rather, discovers it as
requirements engineering work is being conducted.

• Once the pattern has been discovered, it is documented

29

Discovering Analysis Patterns

• The most basic element in the description
of a requirements model is the use case.

• A coherent set of use cases may serve as
the basis for discovering one or more
analysis patterns.

• A semantic analysis pattern (SAP) “is a
pattern that describes a small set of coherent
use cases that together describe a basic generic
application.” [Fer00]

30

An Example

• Consider the following preliminary use case for software required to control
and monitor a real-view camera and proximity sensor for an automobile:

Use case: Monitor reverse motion
Description: When the vehicle is placed in reverse gear,
the control software enables a video feed from a rear-placed
video camera to the dashboard display. The control software
superimposes a variety of distance and orientation lines on
the dashboard display so that the vehicle operator can
maintain orientation as the vehicle moves in reverse. The
control software also monitors a proximity sensor to
determine whether an object is inside 10 feet of the rear of
the vehicle. It will automatically break the vehicle if the
proximity sensor indicates an object within 3 feet of the rear
of the vehicle.

31

An Example

• This use case implies a variety of functionality that would
be refined and elaborated (into a coherent set of use
cases) during requirements gathering and modeling.

• Regardless of how much elaboration is accomplished,
the use case(s) suggest(s) a simple, yet widely
applicable SAP—the software-based monitoring and
control of sensors and actuators in a physical system.

• In this case, the “sensors” provide information about
proximity and video information. The “actuator” is the
breaking system of the vehicle (invoked if an object is
very close to the vehicle.

• But in a more general case, a widely applicable pattern
is discovered --> Actuator-Sensor

32

Actuator-Sensor Pattern—I
Pattern Name: Actuator-Sensor
Intent: Specify various kinds of sensors and actuators in an embedded system.

Motivation: Embedded systems usually have various kinds of sensors and actuators. These sensors
and actuators are all either directly or indirectly connected to a control unit. Although many of the
sensors and actuators look quite different, their behavior is similar enough to structure them into a
pattern. The pattern shows how to specify the sensors and actuators for a system, including attributes
and operations. The Actuator-Sensor pattern uses a pull mechanism (explicit request for information)
for PassiveSensors and a push mechanism (broadcast of information) for the ActiveSensors.

Constraints:
Each passive sensor must have some method to read sensor input and attributes that represent the
sensor value.

Each active sensor must have capabilities to broadcast update messages when its value changes.

Each active sensor should send a life tick, a status message issued within a specified time frame, to
detect malfunctions.

Each actuator must have some method to invoke the appropriate response determined by the
ComputingComponent.
Each sensor and actuator should have a function implemented to check its own operation state.

Each sensor and actuator should be able to test the validity of the values received or sent and set its
operation state if the values are outside of the specifications.

33

Actuator-Sensor Pattern—II
Applicability: Useful in any system in which multiple sensors and actuators are present.

Structure: A UML class diagram for the Actuator-Sensor Pattern is shown in Figure 7.8.
Actuator, PassiveSensor and ActiveSensor are abstract classes and denoted in italics. There
are four different types of sensors and actuators in this pattern. The Boolean, integer, and real
classes represent the most common types of sensors and actuators. The complex classes are
sensors or actuators that use values that cannot be easily represented in terms of primitive data
types, such as a radar device. Nonetheless, these devices should still inherit the interface from
the abstract classes since they should have basic functionalities such as querying the operation

states.

34

Actuator-Sensor Pattern—III
Behavior: Figure 7.9 presents a UML sequence diagram for an example of the Actuator-Sensor Pattern as it might be
applied for the SafeHome function that controls the positioning (e.g., pan, zoom) of a security camera. Here, the
ControlPanel queries a sensor (a passive position sensor) and an actuator (pan control) to check the operation state for
diagnostic purposes before reading or setting a value. The messages Set Physical Value and Get Physical Value are
not messages between objects. Instead, they describe the interaction between the physical devices of the system and
their software counterparts. In the lower part of the diagram, below the horizontal line, the PositionSensor reports that the
operation state is zero. The ComputingComponent then sends the error code for a position sensor failure to the
FaultHandler that will decide how this error affects the system and what actions are required. it gets the data from the
sensors and computes the required response for the actuators.

35

Actuator-Sensor Pattern—III

• See SEPA, 7/e for additional
information on:
– Participants
– Collaborations
– Consequences

36

Requirements Modeling for WebApps

Content Analysis. The full spectrum of content to be provided by the
WebApp is identified, including text, graphics and images, video, and
audio data. Data modeling can be used to identify and describe each of
the data objects.

Interaction Analysis. The manner in which the user interacts with the
WebApp is described in detail. Use-cases can be developed to provide
detailed descriptions of this interaction.

Functional Analysis. The usage scenarios (use-cases) created as part of
interaction analysis define the operations that will be applied to WebApp
content and imply other processing functions. All operations and
functions are described in detail.

Configuration Analysis. The environment and infrastructure in which the
WebApp resides are described in detail.

37

When Do We Perform Analysis?

• In some WebE situations, analysis and design
merge. However, an explicit analysis activity
occurs when …
– the WebApp to be built is large and/or complex
– the number of stakeholders is large
– the number of Web engineers and other

contributors is large
– the goals and objectives (determined during

formulation) for the WebApp will effect the
business’ bottom line

– the success of the WebApp will have a strong
bearing on the success of the business

38

The Content Model

• Content objects are extracted from use-cases
– examine the scenario description for direct and

indirect references to content
• Attributes of each content object are identified
• The relationships among content objects and/or

the hierarchy of content maintained by a
WebApp
– Relationships—entity-relationship diagram or UML
– Hierarchy—data tree or UML

39

Data Tree

Figure 1 8 .3 Dat a t ree for a SafeHom e com ponent

component

part Number

part Name

part Type

descript ion

price

Market ingDescript ion

Phot ograph

TechDescript ion

Schemat ic

Video

WholesalePrice

Ret ailPr ice

40

The Interaction Model

• Composed of four elements:
– use-cases
– sequence diagrams
– state diagrams
– a user interface prototype

• Each of these is an important UML notation
and is described in Appendix I

41

Sequence Diagram

Figure 18.5 Sequence diagram for use-case: select SafeHome components

new cust omer

:Room :FloorPlan

desc ribes
room *

plac es room
in f loor p lan

:Product
Component

selec t s produc t c om ponent *

:Billof
Mat er ials

add t o BoM

FloorPlan
Reposit ory

sav e f loor p lan c onf igurat ion

sav e b i l l o f m at eria ls

BoM
Reposit ory

42

State Diagram

Figure 1 8 .6 Part ial st at e diagram f or ne w c us t ome r int eract ion

n e w cu st o m e r

Validat ing user

system status=“input ready”
display msg = “enter userid”
display msg =“enter pswd”

ent ry/ log-in requested
do: run user validat ion
exit / set user access switch

select “log-in”

userid
validated

password validated

Select ing user act ion

system status=“link ready”
display: navigat ion choices”

ent ry/ validated user
do: link as required
exit /user act ion selected

select other funct ions

select customizat ion funct ionalit y

select e-commerce (purchase) funct ionalit y

Customizing

system status=“input ready”
display: basic inst ruct ions

ent ry/validated user
do: process user select ion
exit / customizat ion terminated

select descript ive
content

room being def ined

Def ining room

system status=“input ready”
display: room def . window

ent ry/ room def . selected
do: run room queries
do: store room variables
exit / room completed

select descript ive
content

Building f loor plan

system status=“input ready”
display: f loor plan window

ent ry/ f loor plan selected
do: insert room in place
do: store f loor plan variables
exit / room insert ion completed

select descript ive
content

select enter room in f loor plan

Saving f loor plan

system status=“input ready”
display: storage indicator

ent ry/ f loor plan save selected
do: store f loor plan
exit / save completed

select save f loor plan

room insert ion completed

next select ion

customizat ion complete

all rooms
def ined

43

The Functional Model

• The functional model addresses two
processing elements of the WebApp
– user observable functionality that is delivered by

the WebApp to end-users
– the operations contained within analysis classes

that implement behaviors associated with the class.
• An activity diagram can be used to represent

processing flow

44

Activity Diagram

Figure 1 8 .7 Act ivit y diagram f or c omput e Pr i c e() ope r a t i o

init ialize t ot alCost

invoke
calcShippingCost

get price and
quant it y

components remain on BoMList

invoke
det ermineDiscount

discount < = 0

discount>0 t ot alCost=
 t ot alCost - discount

t axTot al=
t ot alCost x t axrat e

no components remain on BoMList

lineCost =
price x quant it y

add lineCost t o
t ot alCost

priceTot al =
 t ot alCost + t axTot al
 + shippingCost

ret urns:
 shippingCost

ret urns: discount

45

The Configuration Model

• Server-side
– Server hardware and operating system environment must

be specified
– Interoperability considerations on the server-side must be

considered
– Appropriate interfaces, communication protocols and

related collaborative information must be specified
• Client-side

– Browser configuration issues must be identified
– Testing requirements should be defined

46

Navigation Modeling-I

• Should certain elements be easier to reach (require fewer
navigation steps) than others? What is the priority for
presentation?

• Should certain elements be emphasized to force users to
navigate in their direction?

• How should navigation errors be handled?
• Should navigation to related groups of elements be given

priority over navigation to a specific element.
• Should navigation be accomplished via links, via search-based

access, or by some other means?
• Should certain elements be presented to users based on the

context of previous navigation actions?
• Should a navigation log be maintained for users?

47

Navigation Modeling-II

• Should a full navigation map or menu (as opposed to a single “back” link
or directed pointer) be available at every point in a user’s interaction?

• Should navigation design be driven by the most commonly expected user
behaviors or by the perceived importance of the defined WebApp
elements?

• Can a user “store” his previous navigation through the WebApp to expedite
future usage?

• For which user category should optimal navigation be designed?
• How should links external to the WebApp be handled? overlaying the

existing browser window? as a new browser window? as a separate frame?

48

Q & A

	Introduction to Software Engineering�(CS350)
	Requirement Modeling - II� Flow, Behavior, Patterns, and Webapps
	Requirements Modeling Strategies
	Flow-Oriented Modeling
	The Flow Model
	Flow Modeling Notation
	External Entity
	Process
	Data Flow
	Data Stores
	Data Flow Diagramming: Guidelines
	Constructing a DFD—I
	Level 0 DFD Example
	Constructing a DFD—II
	The Data Flow Hierarchy
	Flow Modeling Notes
	Process Specification (PSPEC)
	DFDs: A Look Ahead
	Control Flow Modeling
	Control Specification (CSPEC)
	Behavioral Modeling
	State Representations
	State Diagram for the ControlPanel Class
	The States of a System
	Behavioral Modeling
	Sequence Diagram
	Writing the Software Specification
	Patterns for Requirements Modeling
	Discovering Analysis Patterns
	An Example
	An Example
	Actuator-Sensor Pattern—I
	Actuator-Sensor Pattern—II
	Actuator-Sensor Pattern—III
	Actuator-Sensor Pattern—III
	Requirements Modeling for WebApps
	When Do We Perform Analysis?
	The Content Model
	Data Tree
	The Interaction Model
	Sequence Diagram
	State Diagram
	The Functional Model
	Activity Diagram
	The Configuration Model
	Navigation Modeling-I
	Navigation Modeling-II
	Q & A

