
Introduction to Software Engineering
(CS350)

Jongmoon Baik

Lecture 09

2

Design Concept

3

Design

• Mitch Kapor, the creator of Lotus 1-2-3,
presented a “software design manifesto” in
Dr. Dobbs Journal. He said:
“What is design? It’s where you stand with a foot in two worlds- the
world of technology and the world of people and human purpose-
and you try to bring the two world together…”

• Good software design should exhibit: [Roam architecture critic Vitruvius]
– Firmness: A program should not have any bugs that inhibit its function.
– Commodity: A program should be suitable for the purposes for which it

was intended.
– Delight: The experience of using the program should be pleasurable

one.

4

Analysis Model -> Design Model

Analysis Model

use-cases - text
use-case diagrams
activity diagrams
swim lane diagrams

data flow diagrams
control-flow diagrams
processing narratives

f l ow- or i e nt e d
e l e me nt s

be ha v i or a l
e l e me nt s

c l a ss- ba se d
e l e me nt s

sc e na r i o- ba se d
e l e me nt s

class diagrams
analysis packages
CRC models
collaboration diagrams

state diagrams
sequence diagrams

D a t a / Cla ss D e sig n

A rc h it e c t u ra l D e sig n

In t e rf a c e D e sig n

Co m p o n e n t -
L e v e l D e sig n

Design Model

5

Design and Quality

• A Guide for the evaluation of a good design
– the design must implement all of the explicit

requirements contained in the analysis model, and
it must accommodate all of the implicit
requirements desired by the customer.

– the design must be a readable, understandable
guide for those who generate code and for those
who test and subsequently support the software.

– the design should provide a complete picture of the
software, addressing the data, functional, and
behavioral domains from an implementation
perspective.

6

Quality Guidelines
• A design should exhibit an architecture that (1) has been created using

recognizable architectural styles or patterns, (2) is composed of components that
exhibit good design characteristics and (3) can be implemented in an evolutionary
fashion

– For smaller systems, design can sometimes be developed linearly.
• A design should be modular; that is, the software should be logically partitioned

into elements or subsystems
• A design should contain distinct representations of data, architecture, interfaces,

and components.
• A design should lead to data structures that are appropriate for the classes to be

implemented and are drawn from recognizable data patterns.
• A design should lead to components that exhibit independent functional

characteristics.
• A design should lead to interfaces that reduce the complexity of connections

between components and with the external environment.
• A design should be derived using a repeatable method that is driven by

information obtained during software requirements analysis.
• A design should be represented using a notation that effectively communicates its

meaning.

7

Design Principles

• The design process should not suffer from ‘tunnel vision.’
• The design should be traceable to the analysis model.
• The design should not reinvent the wheel.
• The design should “minimize the intellectual distance” [DAV95] between

the software and the problem as it exists in the real world.
• The design should exhibit uniformity and integration.
• The design should be structured to accommodate change.
• The design should be structured to degrade gently, even when aberrant data,

events, or operating conditions are encountered.
• Design is not coding, coding is not design.
• The design should be assessed for quality as it is being created, not after the

fact.
• The design should be reviewed to minimize conceptual (semantic) errors.

From Davis [DAV95]

8

Fundamental Design Concepts
• Abstraction—data, procedure, control
• Architecture—the overall structure of the software
• Patterns—”conveys the essence” of a proven design solution
• Separation of concerns—any complex problem can be more easily

handled if it is subdivided into pieces
• Modularity—compartmentalization of data and function
• Hiding—controlled interfaces
• Functional independence—single-minded function and low coupling
• Refinement—elaboration of detail for all abstractions
• Aspects—a mechanism for understanding how global requirements affect

design
• Refactoring—a reorganization technique that simplifies the design
• OO design concepts—Appendix II
• Design Classes—provide design detail that will enable analysis

classes to be implemented

9

Procedural Abstraction

open

implemented with a "knowledge" of the
object that is associated with enter

details of enter
algorithm

10

Data Abstraction

door

implemented as a data structure

manufacturer
model number
type
swing direction
inserts
lights

type
number

weight
opening mechanism

11

Architecture
“The overall structure of the software and the ways in which that
structure provides conceptual integrity for a system.” [SHA95a]

Structural properties. This aspect of the architectural design representation
defines the components of a system (e.g., modules, objects, filters) and the
manner in which those components are packaged and interact with one another.
For example, objects are packaged to encapsulate both data and the processing
that manipulates the data and interact via the invocation of methods

Extra-functional properties. The architectural design description should address
how the design architecture achieves requirements for performance, capacity,
reliability, security, adaptability, and other system characteristics.

Families of related systems. The architectural design should draw upon
repeatable patterns that are commonly encountered in the design of families of
similar systems. In essence, the design should have the ability to reuse
architectural building blocks.

A set of properties specified as part of an architectural design:

Shaw and Galan [Sha95a]

12

Design Patterns

Pattern name—describes the essence of the pattern in a short but expressive
name
Intent—describes the pattern and what it does
Also-known-as—lists any synonyms for the pattern
Motivation—provides an example of the problem
Applicability—notes specific design situations in which the pattern is
applicable
Structure—describes the classes that are required to implement the pattern
Participants—describes the responsibilities of the classes that are required to
implement the pattern
Collaborations—describes how the participants collaborate to carry out their
responsibilities
Consequences—describes the “design forces” that affect the pattern and the
potential trade-offs that must be considered when the pattern is implemented
Related patterns—cross-references related design patterns

Design Pattern Template

13

Separation of Concerns

• Any complex problem can be more easily
handled if it is subdivided into pieces that can
each be solved and/or optimized independently

• A concern is a feature or behavior that is
specified as part of the requirements model for
the software

• By separating concerns into smaller, and
therefore more manageable pieces, a problem
takes less effort and time to solve.

14

Modularity
• "modularity is the single attribute of software that allows

a program to be intellectually manageable" [Mye78].

• Monolithic software (i.e., a large program composed of a
single module) cannot be easily grasped by a software
engineer.
– The number of control paths, span of reference, number of

variables, and overall complexity would make understanding
close to impossible.

• In almost all instances, you should break the design into
many modules, hoping to make understanding easier
and as a consequence, reduce the cost required to build
the software.

15

Modularity: Trade-offs

What is the "right" number of modules
for a specific software design?

optimal number
of modules

cost of
software

number of modules

module
integration

cost

module development cost

16

Information Hiding

module

controlled
interface

"secret"

• algorithm

• data structure

• details of external interface

• resource allocation policy

clients

a specific design decision

17

Why Information Hiding?

• Reduces the likelihood of “side effects”
• Limits the global impact of local design

decisions
• Emphasizes communication through

controlled interfaces
• Discourages the use of global data
• Leads to encapsulation—an attribute of high

quality design
• Results in higher quality software

18

Sizing Modules: Two Views

MODULE

What's
inside??

How big
is it??

19

Functional Independence

• Functional independence is achieved by developing
modules with "single-minded" function and an "aversion"
to excessive interaction with other modules.

– Cohesion is an indication of the relative functional strength of a
module.

• A cohesive module performs a single task, requiring little interaction
with other components in other parts of a program. Stated simply, a
cohesive module should (ideally) do just one thing.

– Coupling is an indication of the relative interdependence among
modules.

• Coupling depends on the interface complexity between modules,
the point at which entry or reference is made to a module, and what
data pass across the interface.

• Two quality criteria for independence:

20

Stepwise Refinement

open

walk to door;
reach for knob;

open door;

walk through;
close door.

repeat until door opens
turn knob clockwise;
if knob doesn't turn, then

take key out;
find correct key;
insert in lock;

endif
pull/push door
move out of way;
end repeat

21

Aspects

• Consider two requirements, A and B.
Requirement A crosscuts requirement B “if
a software decomposition [refinement] has
been chosen in which B cannot be
satisfied without taking A into account.
[Ros04]

• An aspect is a representation of a cross-
cutting concern.

22

Aspects—An Example
• Consider two requirements for the SafeHomeAssured.com

WebApp. Requirement A is described via the use-case Access
camera surveillance via the Internet. A design refinement would
focus on those modules that would enable a registered user to
access video from cameras placed throughout a space.
Requirement B is a generic security requirement that states that a
registered user must be validated prior to using
SafeHomeAssured.com. This requirement is applicable for all
functions that are available to registered SafeHome users. As
design refinement occurs, A* is a design representation for
requirement A and B* is a design representation for requirement B.
Therefore, A* and B* are representations of concerns, and B* cross-
cuts A*.

• An aspect is a representation of a cross-cutting concern. Therefore,
the design representation, B*, of the requirement, a registered user
must be validated prior to using SafeHomeAssured.com, is an
aspect of the SafeHome WebApp.

23

Refactoring

• Fowler [FOW99] defines refactoring in the following
manner:
– "Refactoring is the process of changing a software system in such a

way that it does not alter the external behavior of the code [design]
yet improves its internal structure.”

• When software is refactored, the existing design is examined
for
– redundancy
– unused design elements
– inefficient or unnecessary algorithms
– poorly constructed or inappropriate data structures
– or any other design failure that can be corrected to yield a better

design.

24

OO Design Concepts

• Design classes
– Entity classes
– Boundary classes
– Controller classes

• Inheritance—all responsibilities of a superclass is
immediately inherited by all subclasses

• Messages—stimulate some behavior to occur in the receiving
object

• Polymorphism—a characteristic that greatly reduces the
effort required to extend the design

25

Design Classes
• Analysis classes are refined during design to become entity

classes
• Boundary classes are developed during design to create the

interface (e.g., interactive screen or printed reports) that the
user sees and interacts with as the software is used.
– Boundary classes are designed with the responsibility of managing the

way entity objects are represented to users.
• Controller classes are designed to manage

– the creation or update of entity objects;
– the instantiation of boundary objects as they obtain information from

entity objects;
– complex communication between sets of objects;
– validation of data communicated between objects or between the user

and the application.

26

The Design Model

process dimension

archit ect ure
element s

int erface
element s

component -level
element s

deployment -level
element s

low

high

class diagrams
analysis packages
CRC models
collaborat ion diagrams

use-cases - t ext
use-case diagrams
act ivit y diagrams
sw im lane diagrams
collaborat ion diagrams dat a f low diagrams

cont rol- f low diagrams
processing narrat ives

dat a f low diagrams
cont rol- f low diagrams
processing narrat ives

st at e diagrams
sequence diagrams

st at e diagrams
sequence diagrams

design class realizat ions
subsyst ems
collaborat ion diagrams

design class realizat ions
subsyst ems
collaborat ion diagrams

ref inement s t o:

deployment diagrams

class diagrams
analysis packages
CRC models
collaborat ion diagrams

component diagrams
design classes
act ivit y diagrams
sequence diagrams

ref inement s t o:
component diagrams
design classes
act ivit y diagrams
sequence diagrams

design class realizat ions
subsyst ems
collaborat ion diagrams
component diagrams
design classes
act ivit y diagrams
sequence diagrams

a na ly sis mode l

de sign mode l

Requirement s:
 const raint s
 int eroperabilit y
 t arget s and
 conf igurat ion

t echnical int erf ace
 design
Navigat ion design
GUI design

27

Design Model Elements

• Data elements
– Data model --> data structures
– Data model --> database architecture

• Architectural elements
– Application domain
– Analysis classes, their relationships, collaborations and behaviors are

transformed into design realizations
– Patterns and “styles” (Chapters 9 and 12)

• Interface elements
– the user interface (UI)
– external interfaces to other systems, devices, networks or other producers or

consumers of information
– internal interfaces between various design components.

• Component elements
• Deployment elements

28

Architectural Elements

• The architectural model [Sha96] is derived
from three sources:
– information about the application domain for

the software to be built;
– specific requirements model elements such

as data flow diagrams or analysis classes,
their relationships and collaborations for the
problem at hand, and

– the availability of architectural patterns
(Chapter 12) and styles (Chapter 9).

29

Interface Elements

Cont rolPanel

LCDdisplay
LEDindicat ors
keyPadCharact er ist ics
speaker
wirelessInt erf ace

readKeySt roke()
decodeKey ()
displaySt at us()
light LEDs()
sendCont rolMsg()

Figure 9 .6 UML int erface represent at ion for Cont ro lPa ne l

KeyPad

readKeyst roke()
decodeKey()

< < int erface> >

WirelessPDA

KeyPad

MobilePhone

30

Component Elements

SensorManagement
Sensor

31

Deployment Elements

Figure 9 .8 UML deploym ent diagram for SafeHom e

Personal comput er

Security

homeManagement

Surveillance

communication

Cont rol Panel CPI server

Security homeownerAccess

externalAccess

32

Q & A

	Introduction to Software Engineering�(CS350)
	Design Concept�
	Design
	Analysis Model -> Design Model
	Design and Quality
	Quality Guidelines
	Design Principles
	Fundamental Design Concepts
	Procedural Abstraction
	Data Abstraction
	Architecture
	Design Patterns
	Separation of Concerns
	Modularity
	Modularity: Trade-offs
	Information Hiding
	Why Information Hiding?
	Sizing Modules: Two Views
	Functional Independence
	Stepwise Refinement
	Aspects
	Aspects—An Example
	Refactoring
	OO Design Concepts
	Design Classes
	The Design Model
	Design Model Elements
	Architectural Elements
	Interface Elements
	Component Elements
	Deployment Elements
	Q & A

