
Introduction to Software Engineering
(CS350)

Jongmoon Baik

Lecture 10

2

Architectural Design

3

What is a Software Architecture?
• “the structure or structures of the system, which comprise software

components, the externally visible properties of those components,
and the relationships among them” [Bas03]

• “A preliminary blueprint from which software is constructed”

Implementations

- High level of
system design

- System-level
abstractions

- Reuse design
idioms

Software Architecture

Requirements

David Galran, 2007

http://en.wikipedia.org/wiki/Software_system
http://en.wikipedia.org/wiki/Software_component

4

Why Architecture?

The architecture is not the operational
software. Rather, it is a representation that
enables a software engineer to:

(1) analyze the effectiveness of the design in
meeting its stated requirements,

(2) consider architectural alternatives at a
stage when making design changes is still
relatively easy, and

(3) reduce the risks associated with the
construction of the software.

5

Why is Architecture Important?

• Representations of software architecture are an enabler for
communication between all parties (stakeholders) interested
in the development of a computer-based system.

• The architecture highlights early design decisions that will
have a profound impact on all software engineering work that
follows and, as important, on the ultimate success of the
system as an operational entity.

• Architecture “constitutes a relatively small, intellectually
graspable mode of how the system is structured and how its
components work together” [BAS03].

6

Architectural Descriptions
• The IEEE Computer Society has proposed IEEE-Std-1471-2000,

Recommended Practice for Architectural Description of Software-Intensive
System, [IEE00], with the following objectives

– to establish a conceptual framework and vocabulary for use during the design
of software architecture,

– to provide detailed guidelines for representing an architectural description, and
– to encourage sound architectural design practices.

• The IEEE Standard defines an architectural description (AD) as a “a
collection of products to document an architecture.”

– The description itself is represented using multiple views, where each view is
“a representation of a whole system from the perspective of a related
set of [stakeholder] concerns.”

7

Architectural Genres

• Genre implies a specific category within the
overall software domain.

• Within each category, you encounter a number
of subcategories.
– For example, within the genre of buildings, you would

encounter the following general styles: houses,
condos, apartment buildings, office buildings,
industrial building, warehouses, and so on.

– Within each general style, more specific styles might
apply. Each style would have a structure that can be
described using a set of predictable patterns.

8

Architectural Styles

• Data-centered architectures
• Data flow architectures
• Call and return architectures
• Object-oriented architectures
• Layered architectures

Each style describes a system category that encompasses: (1) a set of
components (e.g., a database, computational modules) that perform a
function required by a system, (2) a set of connectors that enable
“communication, coordination and cooperation” among components, (3)
constraints that define how components can be integrated to form the
system, and (4) semantic models that enable a designer to
understand the overall properties of a system by analyzing the known
properties of its constituent parts.

9

Data-Centered Architecture

10

Data Flow Architecture

11

Call and Return Architecture

12

Layered Architecture

13

Architectural Patterns
• Concurrency—applications must handle multiple tasks in a

manner that simulates parallelism
– operating system process management pattern
– task scheduler pattern

• Persistence—Data persists if it survives past the execution of
the process that created it. Two patterns are common:
– a database management system pattern that applies the storage and

retrieval capability of a DBMS to the application architecture
– an application level persistence pattern that builds persistence

features into the application architecture
• Distribution— the manner in which systems or components

within systems communicate with one another in a
distributed environment
– A broker acts as a ‘middle-man’ between the client component and a

server component.

14

Architectural Design

• As architecture begins, the software must be placed
into context
– the design should define the external entities (other

systems, devices, people) that the software interacts with
and the nature of the interaction

• Once context is modeled, identify a set of
architectural archetypes
– An archetype is an abstraction (similar to a class) that

represents one element of system behavior
• The designer specifies the structure of the system by

defining and refining software components that
implement each archetype

15

Architectural Context

target system:
Security Function

uses
uses peershomeowner

Safehome
Product

Internet-based
system

surveillance
function

sensors

control
panel

sensors

uses

Superordinate systems

Subordinate systems

Actors

Peers

16

Archetypes

Figure 10.7 UML relat ionships for SafeHome securit y funct ion archetypes
(adapted f rom [BOS00])

Cont roller

Node

communicates with

Detector Indicator

17

Component Structure

SafeHome
Execut ive

Ext ernal
Communicat ion

Management

GUI Int ernet
Int erface

Funct ion
select ion

Securit y Surveillance Home
management

Cont rol
panel

processing

det ect or
management

alarm
processing

18

Refined Component Structure

sensorsensor
sensor
sensor

sensor
sensorsensor

sensor

Ext ernal
Communicat ion

Management

GUI Internet
Interface

Security

Cont ro l
panel

processing

det ect or
m anagem ent

alarm
processing

Key pad
processing

CP d isp lay
funct ions

scheduler

sensorsensor
sensorsensor

phone
com m unicat ion

alarm

SafeHome
Execut ive

19

Analyzing Architectural Design
1. Collect scenarios.
2. Elicit requirements, constraints, and environment
description.
3. Describe the architectural styles/patterns that have
been chosen to address the scenarios and requirements:

• Module view
• Process view
• Data flow view

4. Evaluate quality attributes by considering each
attribute in isolation.
5. Identify the sensitivity of quality attributes to various
architectural attributes for a specific architectural style.
6. Critique candidate architectures (developed in step 3)
using the sensitivity analysis conducted in step 5.

20

Architectural Complexity

• the overall complexity of a proposed architecture is
assessed by considering the dependencies between
components within the architecture [Zha98]

– Sharing dependencies represent dependence relationships
among consumers who use the same resource or producers
who produce for the same consumers.

– Flow dependencies represent dependence relationships
between producers and consumers of resources.

– Constrained dependencies represent constraints on the relative
flow of control among a set of activities.

21

ADL
• Architectural description language (ADL) provides a

semantics and syntax for describing a software
architecture

• Provide the designer with the ability to:
– decompose architectural components
– compose individual components into larger architectural

blocks and
– represent interfaces (connection mechanisms) between

components.
• Example: AADL (SAE standard), Wright & ACME (Carnegie Mellon), xADL (UCI),

Darwin (Imperial College), DAOP-ADL (University of Málaga), etc.

• Common elements: component, connector and configuration

22

An Architectural Design Method

"four bedrooms, three baths,
lots of glass ..."

customer requirements

architectural design

23

Deriving Program Architecture

Program
Architecture

24

Partitioning the Architecture

• “horizontal” and “vertical” partitioning are
required

25

Horizontal Partitioning

• define separate branches of the module hierarchy for
each major function

• use control modules to coordinate communication
between functions

function 1 function 3

function 2

26

Vertical Partitioning: Factoring

• design so that decision making and work are stratified
• decision making modules should reside at the top of

the architecture

workers

decision-makers

27

Why Partitioned Architecture?

• results in software that is easier to test
• leads to software that is easier to maintain
• results in propagation of fewer side effects
• results in software that is easier to extend

28

Structured Design

• objective: to derive a program architecture
that is partitioned

• approach:
– a DFD is mapped into a program architecture
– the PSPEC and STD are used to indicate the

content of each module
• notation: structure chart

29

Flow Characteristics

Transform flow

Transaction
flow

This edition of SEPA
does not cover
transaction mapping.
For a detailed
discussion see the
SEPA website

30

General Mapping Approach

isolate incoming and outgoing flow
boundaries; for transaction flows, isolate
the transaction center

working from the boundary outward, map
DFD transforms into corresponding modules

add control modules as required

refine the resultant program structure
using effective modularity concepts

31

General Mapping Approach

• Isolate the transform center by specifying incoming
and outgoing flow boundaries

• Perform "first-level factoring.”
– The program architecture derived using this mapping results in a

top-down distribution of control.

– Factoring leads to a program structure in which top-level
components perform decision-making and low-level components
perform most input, computation, and output work.

– Middle-level components perform some control and do moderate
amounts of work.

• Perform "second-level factoring."

32

Transform Mapping

data flow model

"Transform" mapping

a
b

c

d e f g h

i
j

x1

x2 x3 x4

b c

a

d e f g i

h j

33

Factoring

typical "worker" modules

typical "decision
making" modules

direction of increasing
decision making

34

First Level Factoring

main
program

controller

input

controller
processing

controller

output

controller

35

Second Level Mapping

D
C

B A

A

C
B

Dmapping from the
flow boundary outward

main

control

36

Q & A

	Introduction to Software Engineering�(CS350)
	Architectural Design�
	What is a Software Architecture?
	Why Architecture?
	Why is Architecture Important?
	Architectural Descriptions
	Architectural Genres
	Architectural Styles
	Data-Centered Architecture
	Data Flow Architecture
	Call and Return Architecture
	Layered Architecture
	Architectural Patterns
	Architectural Design
	Architectural Context
	Archetypes
	Component Structure
	Refined Component Structure
	Analyzing Architectural Design
	Architectural Complexity
	ADL
	An Architectural Design Method
	Deriving Program Architecture
	Partitioning the Architecture
	Horizontal Partitioning
	Vertical Partitioning: Factoring
	Why Partitioned Architecture?
	Structured Design
	Flow Characteristics
	General Mapping Approach
	General Mapping Approach
	Transform Mapping
	Factoring
	First Level Factoring
	Second Level Mapping
	Q & A

