Introduction to Software Engiﬁ&i‘iﬁg

(CS350) ”
Lecture 11

Jongmoon Baik

111111111

Componeni-Level Design

What IS a Component?

 OMG Unified Modeling Language Specification
[OMGO1] defines a component as

— ... amodular, deployable, and replaceable part of a system
that encapsulates implementation and exposes a set of
Interfaces.””

e OO view: acomponent contains a set of
collaborating classes

e Conventional view: a component contains processing
logic, the internal data structures that are required to
Implement the processing logic, and an interface that
enables the component to be invoked and data to be
passed to It.

a Advanced Institute of Sclenca and Techrology

00 Component

analysis class

PrintJob

numberOf Pages
numberOfSides
paperType
magnification

productionFeatures

design component

computeJobCost()
passJobtoPrinter()

computeJdob

PrintJob

initiateJob

elaborated design class

<<interface>>
computelob

PrintJob

comput ePageCost () number Of Pages
comput ePaper Cost () number Of Sides
comput ePr odCost () paper Type
comput eTot alJobCost () \ paper Weight
»aper Size
paper Color
\\ nagnif icat ion
Ny color Requir ement s
pr oduct ionFeat ur es

:] collat ionOpt ions

bindingOpt ions

cover St ock

<<interface>> bleed
initiateJob priority

tot alJobCost

WOnumber

buildWor kOr der ()
checkPriority () —_
passJobt o Product ion() ‘ — D ePageCost ()
comput ePaper Cost ()
comput ePr odCost ()
comput eTot alJobCost ()
buildWor kOr der ()
checkPriority ()
passJobto Product ion()

KAIST gi=aot7iasd 4

Korea Advanced insiitule of Sclence and Technolagy

getJobData

[» S——
accessCostsDB

elaborated module

PageCost

in: numberPages

in: numberDocs

in: sides= 1, 2

in: color=1, 2, 3, 4

in: page size= A, B, C, B
out : page cost

in: job size

in. color=1, 2, 3, 4

in: pageSze = A, B, C, B
out: BPC

out: SF

getJobData (numberPages,numberDocs,
sides, color, page Size, pageCost)
accessCostsDB (jobSize, color, pageSize,
BPC, SF)

computePageCost() —————— — —|— — — — — —

design component

ComputePageCost

job size (JS) =
numberPages* numberDocs;

lookup base page cost (BPC) -->
accessCostsDB (JS, color);
lookup size factor (SF -->
accessCost DB (JS, color, size)
job complexity factor (JCF) =
1 + [(sides-1)* sideCost + SH
pagecost = BPC * JCF

CIRo7ISe

Korea Advanced insiitule of Sclence and Technolagy

KAIST

Basic Design Principles

e The Open-Closed Principle (OCP). ““A module [component] should be open for
extension but closed for modification.

« The Liskov Substitution Principle (LSP). “Subclasses should be substitutable for
their base classes.

« Dependency Inversion Principle (DIP). ““Depend on abstractions. Do not depend
on concretions.”

« The Interface Segregation Principle (ISP). “Many client-specific interfaces are
better than one general purpose interface.

« The Release Reuse Equivalency Principle (REP). “The granule of reuse is the
granule of release.”

e The Common Closure Principle (CCP). ““Classes that change together belong
together.”

« The Common Reuse Principle (CRP). ““Classes that aren’t reused together should
not be grouped together.”

Source: Martin, R., “Design Principles and Design Patterns,” downloaded from http:www.objectmentor.com, 2000.

KAIST fImatiZied 0

9~ Design Guidelines

o Components

— Naming conventions should be established for
components that are specified as part of the architectural
model and then refined and elaborated as part of the
component-level model

e [nterfaces

— Interfaces provide important information about
communication and collaboration (as well as helping us to
achieve the OPC)

* Dependencies and Inheritance

— 1t Is a good idea to model dependencies from left to right
and inheritance from bottom (derived classes) to top (base
classes).

a Advanced Institute of Sclenca and Techrology

Cohesion

e Conventional view:

OO view:

— cohesion implies that a component or class encapsulates only attributes
and operations that are closely related to one another and to the class or
component itself

o Levels of cohesion

— Functional

— Layer

— Communicational

— Sequential

— Procedural

— Temporal

— utility

a Advanced Institute of Sclenca and Techrology

Coupling

e Conventional view:

— The degree to which a component is connected to other components
and to the external world

e OO view:

— aqualitative measure of the degree to which classes are connected to
one another

e Level of coupling
— Content
— Common
— Control
— Stamp
— Data
— Routine call
— Type use
— Inclusion or import
— External

a Advanced Institute of Sclenca and Techrology

9 Component Level Design-I

o Step 1. Identify all design classes that correspond to
the problem domain.

o Step 2. ldentify all design classes that correspond to
the infrastructure domain.

o Step 3. Elaborate all design classes that are not
acquired as reusable components.

o Step 3a. Specify message details when classes or
component collaborate.

o Step 3b. ldentify appropriate interfaces for each
component.

KAIST Z3aa7ies 10

a Advanced Institute of Sclenca and Techrology

Step 3c. Elaborate attributes and define data types and data
structures required to implement them.

Step 3d. Describe processing flow within each operation in
detail.

Step 4. Describe persistent data sources (databases and files)
and identify the classes required to manage them.

Step 5. Develop and elaborate behavioral representations for a
class or component.

Step 6. Elaborate deployment diagrams to provide additional
Implementation detail.

Step 7. Factor every component-level design representation
and always consider alternatives.

KAIST Z3aci7ies i

a Advanced Institute of Sclenca and Techrology

Collaboration Diagram

:ProductionJob

1: buildJob (WOnumber
(// 2: submitJob (WOnumber)

‘WorkOrder

:JobQueue

KAIST gi=t7ied 12

stitule of Szlence and Technology

Relactoring

computeJob,
o—

|::| PrintJob

initiateJob
: [1]

WorkOrder

<<interface>>
initiateJob

appropriate attributes

getJobDescriiption . buildJob
: buildWorkOrder () —)a—l

passJobToProduction()

ProductionJob

1> o —
| submitJob

JobQueue

appropriate attributes

checkPriority ()

KAIST S=W%7IEee 13

Korea Advanced Institule of Sclence and Technology

validate attributes
input

L4

accessPaperDB (weight)

returns baseCostperPagev

paperCostperPage =
baseCostperPage

paperCostperPage =

size = B
paperCostperPage *1 .2

!
1

size = C paperCostperPage =
paperCostperPage *1 .4

size = D paperCostperPage =
paperCostperPage *1 .6

A\

color is custom
paperCostperPage =
paperCostperPage *1 .1

|

color is standard

!

returns
(paperCostperPage)

@<

KAIST

CIRo7ISe

Korea Advanced insiitule of Sclence and Technolagy

14

behavior within the
state buildingJobDat a

-~

\
\
\

datalnputln(;omplete r buildingJobData

entry/ readJdobData () s
exit/displayJobData ()
do/ checkConsistency (3 -

chude/ datalnput =

4

datalnput Completed[all dat a
items consistent]/displayUserOptions

computingJobCost

entry/ computeJdob
exit/ save totalJobCost

(" es])
NI

jobCost Accepted [customer is aut horized]/ v
get HectronicSignature

B

formingJob

entry/ buildJdob
exit/ save WONnumber

do/

submittingJob

B

entry/ submitJdob
exit/initiateJob
do/ place on JobQueue

U VU

jobSubmitted[all aut horizations acquired]/
print WorkOrd er

KAIST S=W%7IEee 15

Korea Advanced insiitule of Sclence and Technolagy

Designing Conventional Components

* The design of processing logic is governed by
the basic principles of algorithm design and
structured programming

* The design of data structures is defined by the
data model developed for the system

e The design of interfaces iIs governed by the
collaborations that a component must effect

a Advanced Institute of Sclenca and Techrology

16

k Algorithm Design

* the closest design activity to coding

e the approach:

—review the design description for the
component

— use stepwise refinement to develop
algorithm

— use structured programming to implement
procedural logic

— use ‘formal methods’ to prove logic

KAIST Z3aci7ies 17

a Advanced Institute of Sclenca and Techrology

Mepwise Refinement

OPEN

Wl e ele)e)fs
[ECCHNOIFKNB

OPENNUOO]F

Wl KEnreugns
glosie caor,

KAIST oi=aot7ias 18

Kaorea Advanced Institule of Scienca and Technology

Algorithm Design Model

 represents the algorithm at a level of detail
that can be reviewed for quality

 options:

KAIST 2zU%7Ies 19

a Advanced Institute of Sclenca and Techrology

Mructured Programming

uses a limited set of logical constructs:

J

W

g Seduence

O conditional — if-then-else, select-case
O loops — do-while, repeat until

leads to more readable, testable code

can be used in conjunction with ‘proof of correctness’

important for achieving high quality,
but not enough

a Advanced insti

uuuuuuuuuuuuuuuuuuuu

20

\)* A Structured Procedural Design

Q add a condition Z,
if true, exit the program

SN

Conditions

regular customer

silver customer

gold customer

special discount

Rules

no discount

apply 8 percent discount

apply 15 percent discount

apply additional x percent discount

KAIST Tr=iifi7ied

a Advanced Institute of Sclence and Technalo m

22

) Program Design Language (PDI)

*_& 1T condition x
| | then process a;
else process b;

endif
If-then-else PDL

easy to combine with source code
machine readable, no need for graphics input
graphics can be generated from PDL

enables declaration of data as well as procedure

U U O O O

easier to maintain

KAIST 2zU%7Ies 23

a Advanced Institute of Sclenca and Techrology

1 can be a derivative of the HOL of choice
e.g., Ada PDL

J machine readable and processable

d can be embedded with source code,
therefore easier to maintain

1 can be represented in great detall, if
designer and coder are different

1 easy to review

KAIST 2zU%7Ies 24

a Advanced Institute of Sclenca and Techrology

Component-Based Development

* When faced with the possibility of reuse, the software
team asks:

— Are commercial off-the-shelf (COTS) components
available to implement the requirement?

— Are internally-developed reusable components available to
Implement the requirement?

— Are the interfaces for available components compatible
within the architecture of the system to be built?

» At the same time, they are faced with the following
Impediments to reuse ...

KAIST 2zU%7Ies 25

a Advanced Institute of Sclenca and Techrology

9~ Impediments to Reuse

e Few companies and organizations have anything that even
slightly resembles a comprehensive software reusability plan.

 Although an increasing number of software vendors currently
sell tools or components that provide direct assistance for
software reuse, the majority of software developers do not use
them.

 Relatively little training is available to help software engineers
and managers understand and apply reuse.

e Many software practitioners continue to believe that reuse is
“more trouble than it’s worth.”

* Many companies continue to encourage of software
development methodologies which do not facilitate reuse

e Few companies provide an incentives to produce reusable
program components.

KAIST Z3aci7ies 26

a Advanced Institute of Sclenca and Techrology

Domain Engineering

Reusable
Artifact
Development

\ Domain j \ Structural)

Software

Domain
- el | A rchitecture

Development

Analysis

Repository
Reusable
Artifacts/

Components

/

. System

Analysis
User

Requirements
Analysis
\’ System) \ & Design Application

Models

Software

KAIST

CIRfo 7S]

Korea Advanced insiitule of Sclence and Technolagy

21

Domain Engineering

1. Define the domain to be investigated.

2. Categorize the items extracted from the domain.
3. Collect a representative sample of applications
In the domain.

4. Analyze each application in the sample.

5. Develop an analysis model for the objects.

KAIST 2zU%7Ies 28

a Advanced Institute of Sclenca and Techrology

[dentilying Reusable Components

 |s component functionality required on future implementations?

« How common is the component's function within the domain?

* |s there duplication of the component's function within the domain?
* |s the component hardware-dependent?

* Does the hardware remain unchanged between implementations?

e Can the hardware specifics be removed to another component?

* |s the design optimized enough for the next implementation?

« Can we parameterize a non-reusable component so that it becomes
reusable?

 |s the component reusable in many implementations with only minor
changes?

* |s reuse through modification feasible?

e Can a non-reusable component be decomposed to yield reusable
components?

 How valid is component decomposition for reuse?

KAIST 2zU%7Ies 29

a Advanced Institute of Sclenca and Techrology

9~ Component-Based SE

* a library of components must be available

e components should have a consistent
structure

 a standard should exist, e.g.,
- OMG/CORBA

— Microsoft COM
— Sun JavaBeans

KAIST Z3aci7ies 30

a Advanced Institute of Sclenca and Techrology

CBME Activities

e Component qualification
e Component adaptation

e Component composition
e Component update

KAIST Z3aa7ies 3

a Advanced Institute of Sclenca and Techrology

Before a component can be used, you must consider:

» application programming interface (API)

» development and integration tools required by the component

* run-time requirements including resource usage (e.g., memory or
storage), timing or speed, and network protocol

» service requirements including operating system interfaces and
support from other components

» security features including access controls and authentication
protocol

« embedded design assumptions including the use of specific
numerical or non-numerical algorithms

» exception handling

KAIST Z3aci7ies 32

a Advanced Institute of Sclenca and Techrology

9 Adaptation

The implication of “easy integration” is:

(1) that consistent methods of resource management have
been implemented for all components in the library;

(2) that common activities such as data management exist
for all components, and

(3) that interfaces within the architecture and with the
external environment have been implemented in a
consistent manner.

KAIST 2zU%7Ies 33

a Advanced Institute of Sclenca and Techrology

9 Composition

e An Infrastructure must be established to bind
components together

 Architectural ingredients for composition
Include:
— Data exchange model
— Automation
— Structured storage
— Underlying object model

KAIST 2zU%7Ies 34

a Advanced Institute of Sclenca and Techrology

OMG/ CORBA

The Object Management Group has published a common
object request broker architecture (OMG/CORBA).

An object request broker (ORB) provides services that enable
reusable components (objects) to communicate with other
components, regardless of their location within a system.

Integration of CORBA components (without modification)
within a system is assured if an interface definition language
(IDL) interface is created for every component.

Objects within the client application request one or more
services from the ORB server. Requests are made via an IDL
or dynamically at run time.

An interface repository contains all necessary information
about the service’s request and response formats.

KAIST Z3aci7ies 35

a Advanced Institute of Sclenca and Techrology

ORB Architecture

Interface
Repository

ORB
interface

Dynamic
Invocation

Server
Objects

ORB Core HEEB

ORB
interface

Object
Adapter

Interface
Repository

KAIST g=ac7ias) 360

Korea Advanced Institule of Sclence and Technology

Microsofit COM

e The component object model (COM)
a specification for using components
by various vendors within a single ap

orovides
oroduced
nlication

running under the Windows operating system.

« COM encompasses two elements:
— COM interfaces (implemented as COM

objects)

— a set of mechanisms for registering and passing

messages between COM interfaces.

a Advanced Institute of Sclenca and Techrology

31

k3 Sun JavaBeans

e The JavaBeans component system is a portable,
platform independent CBSE infrastructure developed
using the Java programming language.

* The JavaBeans component system encompasses a set
of tools, called the Bean Development Kit (BDK),
that allows developers to

— analyze how existing Beans (components) work

— customize their behavior and appearance

— establish mechanisms for coordination and communication
— develop custom Beans for use in a specific application

— test and evaluate Bean behavior.

KAIST 2zU%7Ies 38

a Advanced Institute of Sclenca and Techrology

Classification

e Enumerated classification —components are
described by defining a hierarchical structure
In which classes and varying levels of
subclasses of software components are
defined

e Faceted classification —a domain area IS
analyzed and a set of basic descriptive
features are 1dentified

o Attribute-value classification —a set of
attributes are defined for all components in a
domain area

KAIST Z3aci7ies 39

a Advanced Institute of Sclenca and Techrology

Indexing

Viocabnlaries

Unicomtrolled

/\ TN

Tertns exgracted Tetrns ot estractsd

frorn tead, fronn tesd,
— Brnurnerated — Descriptors With syntacx
— Placatad — aubject, Withont syntas
hesdings
Thesznrns ——

KAIST fImatiZied 10

The Reuse Environmen

* A component database capable of storing software
components and the classification information
necessary to retrieve them.

A library management system that provides access to
the database.

A software component retrieval system (e.g., an object
request broker) that enables a client application to
retrieve components and services from the library
server.

e CBSE tools that support the integration of reused
components into a new design or implementation.

KAIST Z3aci7ies 1

a Advanced Institute of Sclenca and Techrology

KAIST fImatiZied 12

	Introduction to Software Engineering�(CS350)
	Component-Level Design�
	What is a Component?
	OO Component
	Conventional Component
	Basic Design Principles
	Design Guidelines
	Cohesion
	Coupling
	Component Level Design-I
	Component-Level Design-II
	Collaboration Diagram
	Refactoring
	Activity Diagram
	Statechart
	Designing Conventional Components
	Algorithm Design
	Stepwise Refinement
	Algorithm Design Model
	Structured Programming
	A Structured Procedural Design
	Decision Table
	Program Design Language (PDL)
	Why Design Language?
	Component-Based Development
	Impediments to Reuse
	The CBSE Process
	Domain Engineering
	Identifying Reusable Components
	Component-Based SE
	CBSE Activities
	Qualification
	Adaptation
	Composition
	OMG/ CORBA
	ORB Architecture
	Microsoft COM
	Sun JavaBeans
	Classification
	Indexing
	The Reuse Environment
	Q & A

