
Introduction to Software Engineering
(CS350)

Jongmoon Baik

Lecture 13

2

Quality Concepts

3

4

Patriot Missile Defense System

• Feb. 25, 1991 during Gulf War
• Chopping error missed 0.000000095 second in

precision in every 10th of a second accumulating for
100 hours

• Failure to intercept a SCUD Missile
 LOSS of 28 Lives

4

5

TOYOTA Vehicle Recalls

• Toyota vehicle recalls occurred at
the end of 2009 and start of 2010.

• On February 3, 2010, the U.S.
NHTSA* announced about
possible problems related to the
anti-locking braking (ABS)
software on Toyota vehicles.
 Lost of $2 Billion

* NHTSA: National Highway Traffic Safety Administration

5

http://babyboomeradvisorclub.com/wp-content/uploads/2010/03/prius.jpg
http://babyboomeradvisorclub.com/wp-content/uploads/2010/03/prius.jpg

6

Software Quality
• In 2005, ComputerWorld [Hil05] lamented that

– “bad software plagues nearly every organization that uses computers, causing
lost work hours during computer downtime, lost or corrupted data, missed sales
opportunities, high IT support and maintenance costs, and low customer
satisfaction.

• A year later, InfoWorld [Fos06] wrote about the
– “the sorry state of software quality” reporting that the quality problem had not

gotten any better.

• Today, software quality remains an issue, but who is to blame?
– Customers blame developers, arguing that sloppy practices lead to low-quality

software.
– Developers blame customers (and other stakeholders), arguing that irrational

delivery dates and a continuing stream of changes force them to deliver software
before it has been fully validated.

7

Quality - What is it?

• Easy to say, hard to define
• What is a “Quality Product”

– Ambiguous at best?
• Typically deals with the product and the

process
• Is this a discipline or an organization?

8

Quality

• The American Heritage Dictionary defines quality as
– “a characteristic or attribute of something.”

• For software, two kinds of quality may be encountered:
– Quality of design encompasses requirements, specifications, and the

design of the system.
– Quality of conformance is an issue focused primarily on

implementation.
– User satisfaction = compliant product + good quality + delivery within

budget and schedule

9

What is it?

“The Problem of quality management is not
what people don’t know about it. The problem
is what they think they know.”

Philip Crosby, ’79 SEPA

10

Quality—A Philosophical View

• Robert Persig [Per74] commented on the thing we call quality:
– Quality . . . you know what it is, yet you don't know what it is. But

that's self-contradictory. But some things are better than others, that is,
they have more quality. But when you try to say what the quality is,
apart from the things that have it, it all goes poof! There's nothing to
talk about. But if you can't say what Quality is, how do you know what
it is, or how do you know that it even exists? If no one knows what it
is, then for all practical purposes it doesn't exist at all. But for all
practical purposes it really does exist. What else are the grades based
on? Why else would people pay fortunes for some things and throw
others in the trash pile? Obviously some things are better than others . .
. but what's the betterness? . . . So round and round you go, spinning
mental wheels and nowhere finding anyplace to get traction. What the
hell is Quality? What is it?

11

Quality—A Pragmatic View
• Transcendental view: quality is something that you

immediately recognize, but cannot explicitly define.
• User view: quality in terms of an end-user’s specific

goals. If a product meets those goals, it exhibits quality.
• Manufacturer’s view: quality in terms of the original

specification of the product. If the product conforms to
the spec, it exhibits quality.

• Product view: quality can be tied to inherent
characteristics (e.g., functions and features) of a product.

• Value-based view: quality based on how much a
customer is willing to pay for a product.

In reality, quality encompasses all of these views and more.

12

Developers View
need to minimize

• Before release
– Rework –redesign
– Repair
– Cost of analysis
– Cancellation?

• After release
– Bug identification –Complaints
– Returns
– Support
– Warranty work

13

Software Quality

• Software quality can be defined as:
– An effective software process applied in a manner

that creates a useful product that provides
measurable value for those who produce it and those
who use it.

• This definition has been adapted from [Bes04] and
replaces a more manufacturing-oriented view
presented in earlier editions of this book.

• “The degree to which a system, system component,
or process meet specified requirements (customer or
user needs, or expectation” – IEEE Glossary of Software
Terminology

14

Quality Movement History

• In the beginning……..
– Design-Build -test/check –discard rejects

• Then came Demming
– Analyze processes
– Data collection / source of defects
– Analysis of data and action
– Prevention vice post inspection

• Based on traditional manufacturing

15

But, software is different……..

• Human variation
• Complexity
• Volatile
• Invisible
• Defect propagation

16

Two critical Parts for QA

• The Product delivered –human injection of defects
– Bug / defectfree
– Answers the problem –Requirements
– Activities: Testing, reviews, inspections

• The Process that builds the product
• –to limit human variation

– How to consistently make a high quality product
– Obviously closely tied to the product
– Activities: Audits, inspections
– CMM, standards, formalized

17

Effective Software Process

• An effective software process establishes the
infrastructure that supports any effort at building a high
quality software product.

• The management aspects of process create the checks
and balances that help avoid project chaos—a key
contributor to poor quality.

• Software engineering practices allow the developer to
analyze the problem and design a solid solution—both
critical to building high quality software.

• Finally, umbrella activities such as change management
and technical reviews have as much to do with quality as
any other part of software engineering practice.

18

Useful Product

• A useful product delivers the content, functions,
and features that the end-user desires

• But as important, it delivers these assets in a
reliable, error free way.

• A useful product always satisfies those
requirements that have been explicitly stated by
stakeholders.

• In addition, it satisfies a set of implicit
requirements (e.g., ease of use) that are
expected of all high quality software.

19

Adding Value

• By adding value for both the producer and user of a
software product, high quality software provides benefits
for the software organization and the end-user community.

• The software organization gains added value because
high quality software requires less maintenance effort,
fewer bug fixes, and reduced customer support.

• The user community gains added value because the
application provides a useful capability in a way that
expedites some business process.
– The end result is:

• (1) greater software product revenue,
• (2) better profitability when an application supports a business process, and/or
• (3) improved availability of information that is crucial for the business.

20

Quality Dimensions (I)

 Performance Quality. Does the software deliver all
content, functions, and features that are specified as part of
the requirements model in a way that provides value to the
end-user?

 Feature quality. Does the software provide features that
surprise and delight first-time end-users?

 Reliability. Does the software deliver all features and
capability without failure? Is it available when it is needed?
Does it deliver functionality that is error free?

 Conformance. Does the software conform to local and
external software standards that are relevant to the
application? Does it conform to de facto design and coding
conventions? For example, does the user interface conform
to accepted design rules for menu selection or data input?

David Garvin [Gar87]:

21

Quality Dimensions (II)
 Durability. Can the software be maintained (changed)

or corrected (debugged) without the inadvertent
generation of unintended side effects? Will changes
cause the error rate or reliability to degrade with time?

 Serviceability. Can the software be maintained
(changed) or corrected (debugged) in an acceptably
short time period. Can support staff acquire all
information they need to make changes or correct
defects?

 Aesthetics. Most of us would agree that an aesthetic
entity has a certain elegance, a unique flow, and an
obvious “presence” that are hard to quantify but evident
nonetheless.

 Perception. In some situations, you have a set of
prejudices that will influence your perception of quality.

22

Other Views

• McCall’s Quality Factors (SEPA, Section
14.2.2)

• ISO 9126 Quality Factors (SEPA, Section
14.2.3)

• Targeted Factors (SEPA, Section 14.2.4)

23

The Software Quality Dilemma

• If you produce a software system that has terrible
quality, you lose because no one will want to buy it.

• If on the other hand you spend infinite time, extremely
large effort, and huge sums of money to build the
absolutely perfect piece of software, then it's going to
take so long to complete and it will be so expensive to
produce that you'll be out of business anyway.

• Either you missed the market window, or you simply
exhausted all your resources.

• So people in industry try to get to that magical middle
ground where the product is good enough not to be
rejected right away, such as during evaluation, but also
not the object of so much perfectionism and so much
work that it would take too long or cost too much to
complete. [Ven03]

24

“Good Enough” Software
• Good enough software delivers high quality functions and features

that end-users desire, but at the same time it delivers other more
obscure or specialized functions and features that contain known
bugs.

• Arguments against “good enough.”
– It is true that “good enough” may work in some application domains and

for a few major software companies. After all, if a company has a large
marketing budget and can convince enough people to buy version 1.0, it
has succeeded in locking them in.

– If you work for a small company be wary of this philosophy. If you
deliver a “good enough” (buggy) product, you risk permanent damage to
your company’s reputation.

– You may never get a chance to deliver version 2.0 because bad buzz
may cause your sales to plummet and your company to fold.

– If you work in certain application domains (e.g., real time embedded
software, application software that is integrated with hardware can be
negligent and open your company to expensive litigation.

25

Cost of Quality

• Prevention costs
– Cost of management activities required to plan and coordinate all quality control and quality

assurance activities
– Cost of added technical activities to develop complete requirements and design models
– Test planning cost
– Cost of all training associates with these activities

• Appraisal costs
– Cost of technical reviews
– Cost of data collection and metrics evaluation
– Cost of testing and debugging

• Internal failure costs
– Cost required to perform rework to correct an error
– Cost that occurs when rework inadvertently generates side effects that must me mitigated
– failure mode analysis

• External failure costs
– Complaint resolution
– Product return and replacement
– Help line support
– Warranty work

26

Relative Cost to Fix an Error
• The relative costs to find and repair an error or defect

increase dramatically as we go from prevention to
detection to internal failure to external failure costs.

27

Quality and Risk

• “People bet their jobs, their comforts, their safety, their
entertainment, their decisions, and their very lives on
computer software. It better be right.” SEPA, Chapter 1

• Example:
– Throughout the month of November, 2000 at a hospital in

Panama, 28 patients received massive overdoses of gamma
rays during treatment for a variety of cancers. In the months that
followed, five of these patients died from radiation poisoning and
15 others developed serious complications. What caused this
tragedy? A software package, developed by a U.S. company,
was modified by hospital technicians to compute modified doses
of radiation for each patient.

28

Negligence and Liability

• The story is all too common. A governmental or
corporate entity hires a major software developer or
consulting company to analyze requirements and then
design and construct a software-based “system” to
support some major activity.
– The system might support a major corporate function (e.g.,

pension management) or some governmental function (e.g.,
healthcare administration or homeland security).

• Work begins with the best of intentions on both sides,
but by the time the system is delivered, things have gone
bad.

• The system is late, fails to deliver desired features and
functions, is error-prone, and does not meet with
customer approval.

• Litigation ensues.

29

Quality and Security

• Gary McGraw comments [Wil05]:
• “Software security relates entirely and completely to

quality. You must think about security, reliability,
availability, dependability—at the beginning, in the
design, architecture, test, and coding phases, all through
the software life cycle [process]. Even people aware of
the software security problem have focused on late life-
cycle stuff. The earlier you find the software problem, the
better. And there are two kinds of software problems.
One is bugs, which are implementation problems. The
other is software flaws—architectural problems in the
design. People pay too much attention to bugs and not
enough on flaws.”

30

Achieving Software Quality

• Critical success factors:
– Software Engineering Methods
– Project Management Techniques
– Quality Control
– Quality Assurance

31

Q & A

	Introduction to Software Engineering�(CS350)
	Quality Concepts�
	슬라이드 번호 3
	Patriot Missile Defense System
	TOYOTA Vehicle Recalls
	Software Quality
	Quality - What is it?
	Quality
	What is it?
	Quality—A Philosophical View
	Quality—A Pragmatic View
	Developers View �need to minimize
	Software Quality
	Quality Movement History
	But, software is different……..
	Two critical Parts for QA
	Effective Software Process
	Useful Product
	Adding Value
	Quality Dimensions (I)
	Quality Dimensions (II)
	Other Views
	The Software Quality Dilemma
	“Good Enough” Software
	Cost of Quality
	Relative Cost to Fix an Error
	Quality and Risk
	Negligence and Liability
	Quality and Security
	Achieving Software Quality
	Q & A

