
Introduction to Software Engineering
(CS350)

Jongmoon Baik

Lecture 16

2

Software Testing
Strategy

3

What is Software Testing?

Testing is the process of exercising a program with
the specific intent of finding errors prior to delivery to

the end user.

“[Software testing] is the design and implementation of a special
kind of software system: one that exercises another software
system with the intent of finding bugs.”

Robert V. Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools (1999)

4

What is Software Testing? (Cont.)

• Software Testing typically involves:
– Execution of the software with representative Inputs

under an actual operational conditions
– Comparison of predicted outputs with actual outputs
– Comparison of expected states with resulting states
– Measurement of the execution characteristics

(execution time, memory usage, etc)

5

Goals of Software Testing

• Immediate goal
– Identify discrepancies b/w actual results and expected behavior

• Ultimate goal
– Demonstrate conformance to specification

• Guaranteeing correctness is not realistic in general.
– Provide an indication of correctness, reliability, safety, security,

performance, usability, etc.

• Practical goal
– Improve software reliability at an acceptable cost

• Increase its usefulness

6

Software Testing Issues

Is an
exhaustive
test possible?

How to find a few
input that represent
the entire input
domain?

How much
testing is
required?

When we can
stop testing?

How to generate
test data?

Which
procedure is
proper?

7

What is S/W Testing Strategy?

“An elaborate and systematic plan of series of
actions to be taken for software testing to
locate defects and remove them before the
software system is released”

“No Universal Testing Strategy”

8

Strategic Approach
• To perform effective testing, you should conduct effective technical

reviews. By doing this, many errors will be eliminated before testing
commences.

• Testing begins at the component level and works "outward" toward
the integration of the entire computer-based system.

• Different testing techniques are appropriate for different software
engineering approaches and at different points in time.

• Testing is conducted by the developer of the software and (for large
projects) an independent test group.

• Testing and debugging are different activities, but debugging must
be accommodated in any testing strategy.

9

Test Case, Test Oracle, & Test Bed

• Test Case:
– A test related items which contains the following information

• A set of test inputs
• Execution conditions
• Expected outputs

• Test Oracle:
– A document, or piece of software that allows tester to determine whether a test

has been passed or failed
• e.g.: a specification (pre- and post conditions), a design document, and a set of

requirements

• Test Bed
– An environment that contains all the hardware and software needed to test a

software component or a software system

10

Exhaustive Testing

 How many possible paths?

– About 1014 paths

 Assume that one test
case/millisecond

 How long it will take to execute
all the test cases?

– 3170 years (24 hrs, 7days

working)

20 times

Go with
SELECTIVE TESTING

11

Questions to be Answered

• How do you conduct the tests?

• Should you develop a formal plan for your tests? If then
When?

• Should you test the entire program as whole or run tests only
on a small part of it?

• Should you rerun tests you've already conducted as you add
new components to a large system?

• When should you involve the customer?

12

A Way of Thinking about Testing

• Constructive tasks – Software Analysis,
Design, Coding, Documentation

• Destructive tasks – Testing
– Considered to break the software

• Developers treats lightly, designing and
executing tests that will demonstrate that the
program works, rather than finding errors

13

V & V

• Verification refers to the set of tasks that ensure
that software correctly implements a specific
function.

• Validation refers to a different set of tasks that
ensure that the software that has been built is
traceable to customer requirements. Boehm
[Boe81] states this another way:
– Verification: "Are we building the product right?"
– Validation: "Are we building the right product?"

14

Who Tests the Software?

independent tester

Must learn about the system,
but, will attempt to break it
and, is driven by quality

developer

Understands the system
but, will test "gently"
and, is driven by "delivery"

- Responsible for testing the
individual unit of the program
- Also conduct the integration
testing
- Correct uncovered errors

- Remove the inherent
problems of developers’
testing their programs
- Report to SQA organization :
Independence

Close Collaboration b/w Development Group and ITG are required for
successful tests throughout the life Cycle

15

Testing Strategy

High Level
Design

System
Requirement

Software
Requirement

Code
(Implentation)

Low Level
Design

Acceptance
Test

System
Test

Integration
Test

Unit
Test

Validation

Verification

Software Test Levels

Low Level

High Level

16

Testing Strategy – cont.

• We begin by ‘testing-in-the-small’ and move
toward ‘testing-in-the-large’

• For conventional software
– The module (component) is our initial focus
– Integration of modules follows

• For OO software
– our focus when “testing in the small” changes from

an individual module (the conventional view) to an
OO class that encompasses attributes and operations
and implies communication and collaboration

17

Strategic Issues

• Specify product requirements in a quantifiable manner long
before testing commences.

• State testing objectives explicitly.
• Understand the users of the software and develop a profile for

each user category.
• Develop a testing plan that emphasizes “rapid cycle testing.”
• Build “robust” software that is designed to test itself
• Use effective technical reviews as a filter prior to testing
• Conduct technical reviews to assess the test strategy and test

cases themselves.
• Develop a continuous improvement approach for the testing

process.

18

Software Test Process

Test Case
Design

Test Data
Selection

Test
Execution

Test
Evaluation

Test Plan

Test
Cases

Test Data

Selection criteria

Test
Results

Test OraclesTarget Software

Test
Reports

Input Data Domain

Completion criteriaSelection criteria

specification

• Included in a entire software development process
• Test plan start with requirement analysis
• Test plan & Test procedure: systematic and performed in parallel with s/w

development

19

Unit (Component) Testing
• Focus on the smallest software design (module or component)
• Often corresponds to the notion of “compilation unit” from the prog.

Language
• Responsibility: Developer
• Test internal processing logic and data structure within the boundary of a

component
• Can be conducted in parallel for multiple components
• May be necessary to create stubs: “fake” code that replaces called modules

– If not yet implemented, or not yet tested

module
to be

tested

test cases

results
software
engineer

20

What are tested in Unit Testing?

• Information flows for module interfaces

• Local data structures

• All independent paths (basis path) through

control structure

• Boundary condition

• Error handling paths

21

Unit Test Environment

Test
Cases

Stub Stub Stub

Driver

Module

• Interface
• Local data structure
• Boundary conditions
• Independent paths
• Error handling paths

RESULTS

22

Integration Testing

• Exercise two or more combined units (or components)
• Main objectives:

– Detect interface errors
– Assure the functionalities when combined

• Responsibility: Developers or Testing Group

 Issues
 Integration Strategy (How to Combine?)

 Integration with thirty-party components

 Compatibility, Correctness, etc

23

Integration Testing Strategies

• Non- Incremental Integration
– “Big Bang” approach

• Incremental Approaches
– Top-down Integration
– Bottom-up Integration
– Sandwich Testing

24

“Big Bang” Approach

• All unit tested components are combined at once and tested as
whole

• Disadvantages
– Difficult to correct defects

• Critical and peripheral modules not distinguished
– When errors are corrected, new ones appear : endless loop

• User does not see the product until very late in the development life cycle

CHAOS

25

Top-down Integration

• An Incremental Approach to
construction of the software
architecture

• Integrated by moving
downward through the
control hierarchy
– Depth-First or Breadth-First

• Begins with main control
module (main program)

A

B F I

G

H

C D

E

Depth-First Approach

26

Bottom-up Integration

• Begins construction and
testing with atomic modules
– From components at the lowest

levels in the program structure

• No need for stubs

• Drivers are replaced one at a
time

A

B

ED

GF

I

H

G

C

Clusters

27

Sandwich Integration

• Top level modules are
tested with stubs

• Worker modules are
integrated into clusters

• Advantages:
– Significantly Reduced

number of drivers

– Simplified integration of
clusters

A

B

ED

GF

I

H

G

C

28

Regression Testing
• Regression testing is the re-execution of some subset of tests that

have already been conducted to ensure that changes have not
propagated unintended side effects

• Whenever software is corrected, some aspect of the software
configuration (the program, its documentation, or the data that
support it) is changed.

• Regression testing helps to ensure that changes (due to testing or
for other reasons) do not introduce unintended behavior or
additional errors.

• Regression testing may be conducted manually, by re-executing a
subset of all test cases or using automated capture/playback tools.

29

Smoke Testing

• A common approach for creating “daily builds” for product
software

• Smoke testing steps:
– Software components that have been translated into code are

integrated into a “build.”
• A build includes all data files, libraries, reusable modules, and engineered

components that are required to implement one or more product functions.
– A series of tests is designed to expose errors that will keep the build

from properly performing its function.
• The intent should be to uncover “show stopper” errors that have the

highest likelihood of throwing the software project behind schedule.
– The build is integrated with other builds and the entire product (in its

current form) is smoke tested daily.
• The integration approach may be top down or bottom up.

3030

How to select a strategic option?

• Depends upon software characteristics and project schedule.

• Identify critical modules and test them as early as possible
– Critical Module’s characteristics:

• Address several software requirements
• Has a high level of control
• Complex and error-prone
• Has definite performance requirements

• Focus on critical module functions in regression tests

Copyright@KAIST 2009

31

High Order Testing

• Validation testing
– Focus is on software requirements

• System testing
– Focus is on system integration

• Alpha/Beta testing
– Focus is on customer usage

• Recovery testing
– forces the software to fail in a variety of ways and verifies that recovery is properly

performed
• Security testing

– verifies that protection mechanisms built into a system will, in fact, protect it from
improper penetration

• Stress testing
– executes a system in a manner that demands resources in abnormal quantity, frequency, or

volume
• Performance Testing

– test the run-time performance of software within the context of an integrated system

32

Debugging: A Diagnostic Process

33

The Debugging Process

34

Debugging Effort

time required
to diagnose the
symptom and
determine the
causetime required

to correct the error
and conduct
regression tests

35

Symptoms & Causes

symptom
cause

symptom and cause may be
geographically separated

symptom may disappear when
another problem is fixed

cause may be due to a
combination of non-errors

cause may be due to a system
or compiler error

cause may be due to
assumptions that everyone
believes

symptom may be intermittent

36

Consequences of Bugs

damage

mild annoying

disturbing
serious

extreme
catastrophic

infectious

Bug Type

Bug Categories: function-related bugs,
system-related bugs, data bugs, coding bugs,
design bugs, documentation bugs, standards
violations, etc.

37

Debugging Techniques

brute force / testing

backtracking

induction

deduction

38

Correcting the Error
• Is the cause of the bug reproduced in another part of the

program? In many situations, a program defect is caused
by an erroneous pattern of logic that may be reproduced
elsewhere.

• What "next bug" might be introduced by the fix I'm about
to make? Before the correction is made, the source code
(or, better, the design) should be evaluated to assess
coupling of logic and data structures.

• What could we have done to prevent this bug in the first
place? This question is the first step toward establishing
a statistical software quality assurance approach. If you
correct the process as well as the product, the bug will
be removed from the current program and may be
eliminated from all future programs.

39

Final Thoughts

• Think -- before you act to correct
• Use tools to gain additional insight
• If you’re at an impasse, get help from someone

else
• Once you correct the bug, use regression

testing to uncover any side effects

40

Q & A

	Introduction to Software Engineering�(CS350)
	Software Testing Strategy�
	What is Software Testing?
	What is Software Testing? (Cont.)
	Goals of Software Testing
	Software Testing Issues
	What is S/W Testing Strategy?
	Strategic Approach
	Test Case, Test Oracle, & Test Bed
	Exhaustive Testing
	Questions to be Answered
	A Way of Thinking about Testing
	V & V
	Who Tests the Software?
	Testing Strategy
	Testing Strategy – cont.
	Strategic Issues
	Software Test Process
	Unit (Component) Testing
	What are tested in Unit Testing?
	Unit Test Environment
	Integration Testing
	Integration Testing Strategies
	“Big Bang” Approach
	Top-down Integration
	Bottom-up Integration
	Sandwich Integration
	Regression Testing
	Smoke Testing
	How to select a strategic option?
	High Order Testing
	Debugging: A Diagnostic Process
	The Debugging Process
	Debugging Effort
	Symptoms & Causes
	Consequences of Bugs
	Debugging Techniques
	Correcting the Error
	Final Thoughts
	Q & A

