
Introduction to Software Engineering
(CS350)

Jongmoon Baik

Lecture 17

2

Testing Conventional
Applications

3

Testability

• Operability—it operates cleanly
• Observability—the results of each test case are readily

observed
• Controllability—the degree to which testing can be

automated and optimized
• Decomposability—testing can be targeted
• Simplicity—reduce complex architecture and logic to

simplify tests
• Stability—few changes are requested during testing
• Understandability—of the design

James Bach, 1994

4

What is a “Good” Test?

• A good test has a high probability of finding
an error

• A good test is not redundant.
• A good test should be “best of breed”
• A good test should be neither too simple nor

too complex

5

Internal and External Views

• Any engineered product (and most other things)
can be tested in one of two ways:
– Knowing the specified function that a product has

been designed to perform, tests can be conducted
that demonstrate each function is fully operational
while at the same time searching for errors in each
function; [Black-box testing]

– Knowing the internal workings of a product, tests can
be conducted to ensure that "all gears mesh," that is,
internal operations are performed according to
specifications and all internal components have been
adequately exercised. [White-box testing]

6

Test Case Design

"Bugs lurk in corners
and congregate at
boundaries ..."

Boris Beizer

OBJECTIVE

CRITERIA

CONSTRAINT

to uncover errors

in a complete manner

with a minimum of effort and time

7

Exhaustive Testing

loop < 20 X

There are 10 possible paths! If we execute one
test per millisecond, it would take 3,170 years to
test this program!!

14

8

Selective Testing

loop < 20 X

Selected path

9

Software Testing

Methods

Strategies

white-box
methods

black-box
methods

10

Black-box test vs. White-box
test

Black-box test

• Functional or
behavioral testing

• Conducted at
software interface

• Examines some
fundamental aspect
of a system

• Ignores internal logic
of a software system

White-box test

• Glass-box or
structural testing

• Uses knowledge of
the internal structure
of the software

• Examine procedural
detail (logical paths
and collaboration
b/w components)

11

White-Box Testing

... our goal is to ensure that all
statements and conditions have
been executed at least once ...

12

Why Cover?

logic errors and incorrect assumptions
are inversely proportional to a path's
execution probability

we often believe that a path is not
likely to be executed; in fact, reality is
often counter intuitive

typographical errors are random; it's
likely that untested paths will contain
some

13

Basis Path Testing

First, we compute the cyclomatic
complexity:

number of simple decisions + 1
or

number of enclosed areas + 1

In this case, V(G) = 4

• A white-box testing technique
• Enable to derive a logical complexity measure of a procedural design
• Provide a guideline defining a basis set of execution paths
• Guarantee to execute every statement in the program at once

or
number of nodes – number of edges + 2

14

Cyclomatic Complexity

A number of industry studies have indicated
that the higher V(G), the higher the probability
or errors.

V(G)

modules

modules in this range are
more error prone

15

Basis Path Testing

Next, we derive the
independent paths:

Since V(G) = 4,
there are four paths

Path 1: 1,2,3,6,7,8
Path 2: 1,2,3,5,7,8
Path 3: 1,2,4,7,8
Path 4: 1,2,4,7,2,4,...7,8

Finally, we derive test
cases to exercise these
paths.

1

2

3
4

5 6

7

8

16

Basis Path Testing Notes

you don't need a flow chart,
but the picture will help when
you trace program paths

count each simple logical test,
compound tests count as 2 or
more

basis path testing should be
applied to critical modules

17

Independent Paths?

• Any path through the program that introduces
at least one new set of processing statements
or a new condition

• Test can be designed to force execution of
these paths (a basis set)

• Guaranteed to execute every statement at least
once

18

Cyclomatic Complexity

• A software metric that provides a quantitative
measure of the logical complexity of a
program

• Provides a single ordinal number (an upper
bound for the number of tests to achieve a
complete branch coverage

• Independent of language and language format
• Extended to encompass the design and

structural complexity of a system

19

Application Areas of CC

• Code development risk analysis.

• Change risk analysis in maintenance.

• Test Planning.

• Reengineering.

20

Computation of CC

1. V(G), Cyclomatic Complexity
= The number of regions in a flow graph, G

2. V(G) = E – N + 2
Where E = No. of Edges and N = No. of Nodes

3. V(G) = P + 1
Where P is the number of Predicated Nodes in a flow

graph, G

21

Example: CC Computation

1. No. of Regions (R1,..,R4)
V(G) = 4

2. V(G) = 11 Edges – 9 Nodes + 2
= 4

3. V(G) = 3 Predicate Nodes + 1 =
4

1

2,3

6

87

4,5

9

10

11

R1

R2

R3

R4

22

Deriving Test Cases

• Summarizing:
– Using the design or code as a foundation,

draw a corresponding flow graph.
– Determine the cyclomatic complexity of the

resultant flow graph.
– Determine a basis set of linearly independent

paths.
– Prepare test cases that will force execution of

each path in the basis set.

23

Graph Matrices

• A graph matrix is a square matrix whose size
(i.e., number of rows and columns) is equal to
the number of nodes on a flow graph

• Each row and column corresponds to an
identified node, and matrix entries correspond
to connections (an edge) between nodes.

• By adding a link weight to each matrix entry,
the graph matrix can become a powerful tool
for evaluating program control structure
during testing

24

Control Structure Testing

• Condition testing — a test case design method
that exercises the logical conditions contained
in a program module

• Data flow testing — selects test paths of a
program according to the locations of
definitions and uses of variables in the
program

25

Data Flow Testing
• The data flow testing method [Fra93] selects test paths of a program

according to the locations of definitions and uses of variables in the
program.
– Assume that each statement in a program is assigned a unique

statement number and that each function does not modify its
parameters or global variables. For a statement with S as its statement
number

• DEF(S) = {X | statement S contains a definition of X}
• USE(S) = {X | statement S contains a use of X}

– A definition-use (DU) chain of variable X is of the form [X, S, S'], where
S and S' are statement numbers, X is in DEF(S) and USE(S'), and the
definition of X in statement S is live at statement S'

26

Data Flow Testing – Cont.

K

U

D

A

u

d

d

u, k

d, k

k

u

k, u, d

Data Flow
Anomaly State

27

Loop Testing

Nested
Loops

Concatenated
Loops Unstructured

Loops

Simple
loop

28

Loop Testing: Simple Loops

Minimum conditions—Simple Loops

1. skip the loop entirely

2. only one pass through the loop

3. two passes through the loop

4. m passes through the loop m < n

5. (n-1), n, and (n+1) passes through
the loop

where n is the maximum number
of allowable passes

29

Loop Testing: Nested Loops

Start at the innermost loop. Set all outer loops to their
minimum iteration parameter values.
Test the min+1, typical, max-1 and max for the
innermost loop, while holding the outer loops at their
minimum values.
Move out one loop and set it up as in step 2, holding all
other loops at typical values. Continue this step until
the outermost loop has been tested.

If the loops are independent of one another
then treat each as a simple loop
else* treat as nested loops

endif*
for example, the final loop counter value of loop 1 is
used to initialize loop 2.

Nested Loops

Concatenated Loops

30

Black-Box Testing

requirements

eventsinput

output

31

Black-Box Testing

• How is functional validity tested?
• How is system behavior and performance tested?
• What classes of input will make good test cases?
• Is the system particularly sensitive to certain input

values?
• How are the boundaries of a data class isolated?
• What data rates and data volume can the system

tolerate?
• What effect will specific combinations of data

have on system operation?

32

Graph-Based Methods

new
file

menu select generates
(generation time < 1.0 sec)

document
window

document
tex

t

is represented as
contains

Attributes:

background color: white
text color: default color

 or preferences

(b)

object
#1

Directed link
(link weight)

object
#2

object
#
3

Undirected link

Parallel links

Node weight
(value

)

(a)

allows editing
of

To understand the
objects that are
modeled in
software and the
relationships that
connect these
objects

In this context, we
consider the term
“objects” in the broadest
possible context. It
encompasses data
objects, traditional
components (modules),
and object-oriented
elements of computer
software.

33

Equivalence Partitioning

user
queries

mouse
picks

output
formats

prompts

FK
input

data

34

Sample Equivalence Classes

user supplied commands
responses to system prompts
file names
computational data

physical parameters
bounding values
initiation values

output data formatting
responses to error messages
graphical data (e.g., mouse picks)

data outside bounds of the program
physically impossible data
proper value supplied in wrong place

Valid data

Invalid data

35

Boundary Value Analysis

user
queries mouse

picks

output
formats

prompts

FK
input

data

output
domaininput domain

• Focus on selecting a set of test cases that exercise bounding
values
– Select test cases at the edges of the class

• Complementary to Equivalence Partitioning
• Derive test cases from output domain as well

36

Comparison Testing

• Used only in situations in which the reliability
of software is absolutely critical (e.g., human-
rated systems)
– Separate software engineering teams develop

independent versions of an application using the
same specification

– Each version can be tested with the same test data
to ensure that all provide identical output

– Then all versions are executed in parallel with real-
time comparison of results to ensure consistency

37

Orthogonal Array Testing
• Used when the number of input

parameters is small and the values that
each of the parameters may take are
clearly bounded

One input item at a time L9 orthogonal array

XY

Z

X
Y

Z

38

Model-Based Testing
• Analyze an existing behavioral model for the software or create one.

– Recall that a behavioral model indicates how software will respond to
external events or stimuli.

• Traverse the behavioral model and specify the inputs that will force
the software to make the transition from state to state.
– The inputs will trigger events that will cause the transition to occur.

• Review the behavioral model and note the expected outputs as the
software makes the transition from state to state.

• Execute the test cases.
• Compare actual and expected results and take corrective action as

required.

39

Software Testing Patterns

• Testing patterns are described in much the
same way as design patterns (Chapter
12).

• Example:
• Pattern name: ScenarioTesting
• Abstract: Once unit and integration tests have been

conducted, there is a need to determine whether the software
will perform in a manner that satisfies users. The
ScenarioTesting pattern describes a technique for
exercising the software from the user’s point of view. A failure
at this level indicates that the software has failed to meet a
user visible requirement. [Kan01]

40

Q & A

	Introduction to Software Engineering�(CS350)
	Testing Conventional Applications
	Testability
	What is a “Good” Test?
	Internal and External Views
	Test Case Design
	Exhaustive Testing
	Selective Testing
	Software Testing
	Black-box test vs. White-box test
	White-Box Testing
	Why Cover?
	Basis Path Testing
	Cyclomatic Complexity
	Basis Path Testing
	Basis Path Testing Notes
	Independent Paths?
	Cyclomatic Complexity
	Application Areas of CC
	Computation of CC
	Example: CC Computation
	Deriving Test Cases
	Graph Matrices
	Control Structure Testing
	Data Flow Testing
	Data Flow Testing – Cont.
	Loop Testing
	Loop Testing: Simple Loops
	Loop Testing: Nested Loops
	Black-Box Testing
	Black-Box Testing
	Graph-Based Methods
	Equivalence Partitioning
	Sample Equivalence Classes
	Boundary Value Analysis
	Comparison Testing
	Orthogonal Array Testing
	Model-Based Testing
	Software Testing Patterns
	Q & A

