Introduction to Software Engiﬁ&i‘iﬁg

(CS350) ”
Lecture 17

Jongmoon Baik

111111111

g

Testing Conventional
Applications

o Operability—It operates cleanly

* Observability—the results of each test case are readily
observed

o Controllability—the degree to which testing can be
automated and optimized

« Decomposability—testing can be targeted

« Simplicity—reduce complex architecture and logic to
simplify tests

« Stability—few changes are requested during testing

e Understandability—of the design

James Bach, 1994

KAIST Z3aci7ies 3

a Advanced Institute of Sclenca and Techrology

What IS a “Good” Tesl?

* A good test has a high probability of finding
an error

e A good test iIs not redundant.
« A good test should be “best of breed”

« A good test should be neither too simple nor
too complex

a Advanced Institute of Sclenca and Techrology

Internal and External Views

* Any engineered product (and most other things)
can be tested in one of two ways:

— Knowing the specified function that a product has
been designed to perform, tests can be conducted
that demonstrate each function is fully operational
while at the same time searching for errors in each
function; [Black-box testing]

— Knowing the internal workings of a product, tests can
be conducted to ensure that "all gears mesh," that is,
Internal operations are performed according to
specifications and all internal components have been
adequately exercised. [White-box testing]

a Advanced Institute of Sclenca and Techrology

"Bugs lurk in corners
and congregate at
boundaries ..."

Boris Beizer

OBJECTIVE to uncover errors
CRITERIA In a complete manner
CONSTRAINT with a minimum of effort and time

KAIST fImatiZied 0

Exhaustive Testing

loop <20 X

4 :

There are 10l possible paths! If we execute one
test per millisecond, it would take 3,170 years to
test this program!!

a Advanced Institute of Sclenca and Techrology

selective Testing

loop <20 X

KAIST o=acizies 8

Soitware Testing

KAIST o=acizies ’

¥ Black—box test vs. White—box

Black—box test White—box test
o Functional or o (Glass—box or
behavioral testing structural testing
 Conducted at Uses knowledge of
software interface the internal structure
e Examines some of the software
fundamental aspect ||* Examine procedural
Of a system detail (logical paths
. |Ignores internal logic|| @nd collaboration
of a software system|| ©/W components)

KAIST 2zU%7Ies 10

a Advanced Institute of Sclenca and Techrology

...our goal is to ensure that all

statements and conditions have
been executed at least once ...

KAIST 2zU%7Ies 1

a Advanced Institute of Sclenca and Techrology

?

logic errors and incorrect assumptions
are inversely proportional to a path's
execution probability

we often believe that a path is not
likely to be executed; in fact, reality is
often counter intuitive

typographical errors are random; it's
likely that untested paths will contain
some

KAIST EH=t7ies 12

a Advanced Institute of Sclenca and Techrology

Basis Path Testing

* A white-box testing technigue

» Enable to derive a logical complexity measure of a procedural design
* Provide a guideline defining a basis set of execution paths

» Guarantee to execute every statement in the program at once

Q First, we compute the cyclomatic
complexity:

r number of simple decisions + 1

or
number of enclosed areas + 1

or
number of nodes — number of edges + 2

In this case, V(G) =4

KAIST 2zU%7Ies 13

a Advanced Institute of Sclenca and Techrology

A number of industry studies have indicated
that the higher V(G), the higher the probability
or errors.

modules

modules in this range are
more error prone

KAIST 2zU%7Ies 14

a Advanced Institute of Sclenca and Techrology

Next, we derive the
independent paths:

Since V(G) =4,
there are four paths

Path 1: 1,2,3,6,7,8
Path 2: 1,2,3,5,7,8
Path 3: 1,2,4,7,8

Path 4: 1,2,4,7,2,4,...7,8

Finally, we derive test

cases to exercise these

paths.

a Advanced Institute of Sclenca and Techrology

" Basis Path Testing Notes

|:| you don't need a flow chart,
but the picture will help when
you trace program paths

:| count each simple logical test,
compound tests count as 2 or
more

] basis path testing should be
O applied to critical modules

KAIST EH=t7ies 16

a Advanced Institute of Sclenca and Techrology

Independent Paths?

« Any path through the program that introduces
at least one new set of processing statements
or a new condition

e Test can be designed to force execution of
these paths (a basis set)

 Guaranteed to execute every statement at least
once

KAIST E=Rac7ias 11

a Advanced Institute of Sclenca and Techrology

A software metric that provides a quantitative
measure of the logical complexity of a
program

* Provides a single ordinal number (an upper
pound for the number of tests to achieve a
complete branch coverage

 Independent of language and language format

o Extended to encompass the design and
structural complexity of a system

KAIST 2zU%7Ies 18

a Advanced Institute of Sclenca and Techrology

Application Areas oi C(

e Code development risk analysis.
« Change risk analysis in maintenance.
e Test Planning.

* Reengineering.

a Advanced Institute of Sclenca and Techrology

19

)’ Computation of ((

1. V(G), Cyclomatic Complexity
= The number of regions in a flow graph, G

2. V(G)=E-N+2
Where E = No. of Edges and N = No. of Nodes

3. V(G)=P+1
Where P i1s the number of Predicated Nodes in a flow
graph, G

KAIST 2zU%7Ies 20

a Advanced Institute of Sclenca and Techrology

utation

1. No. of Regions (R1,..,R4)
V(G) = 4

2. V(G)=11Edges -9 Nodes + 2
=4

3. V(G) =3 Predicate Nodes + 1 =

KAIST fImatiZied 2

Test (ases

e Summarizing:

KAIST 2zU%7Ies 22

a Advanced Institute of Sclenca and Techrology

9 Graph Matrices

« A graph matrix Is a square matrix whose size
(1.e., number of rows and columns) is equal to
the number of nodes on a flow graph

e Each row and column corresponds to an
Identified node, and matrix entries correspond
to connections (an edge) between nodes.

* By adding a link weight to each matrix entry,
the graph matrix can become a powerful tool
for evaluating program control structure
during testing

KAIST =2nc7ias 23

a Advanced Institute of Sclenca and Techrology

control Structure Testing

— a test case design method
that exercises the logical conditions contained
In a program module

— selects test paths of a

program according to the locations of
definitions and uses of variables in the

program

24

a Advanced Institute of Sclenca and Techrology

Data Flow Tesling

 The data flow testing method [Fra93] selects test paths of a program
according to the locations of definitions and uses of variables in the
program.

— Assume that each statement in a program is assigned a unique
statement number and that each function does not modify its
parameters or global variables. For a statement with S as its statement
number

 DEF(S) = {X | statement S contains a definition of X}
 USE(S) = {X | statement S contains a use of X}
- A of variable X is of the form [X, S, S'], where

S and S' are statement numbers, X is in DEF(S) and USE(S'), and the
definition of X in statement S is live at statement S'

a Advanced Institute of Sclenca and Techrology

25

Data Flow
. Anomaly State

KAIST fImatiZied 20

9 Loop Testing

1

0]

*

_

Concatenated I

Loops Unstructured
Loops
KAIST ZRuci7ias o7

a Advanced Institute of Sclenca and Techrology

Simple
loop

Nested
Loops

Minimum conditions—Simple Loops

1. skip the loop entirely

2. only one pass through the loop

3. two passes through the loop

4. m passes through the loop m <n
5. (n-1), n, and (n+1) passes through
the loop

where n is the maximum number
of allowable passes

a Advanced Institute of Sclenca and Techrology

Loop Testing: Nested Loops

Nested Loops
Start at the innermost loop. Set all outer loops to their

minimum iteration parameter values.

Test the min+1, typical, max-1 and max for the
innermost loop, while holding the outer loops at their
minimum values.

Move out one loop and set it up as in step 2, holding all
other loops at typical values. Continue this step until
the outermost loop has been tested.

Concatenated Loops

If the loops are independent of one another
then treat each as a simple loop
else* treat as nested loops

endif*

for example, the final loop counter value of loop 1is
used to initialize loop 2.

KAIST 2zU%7Ies 29

a Advanced Institute of Sclenca and Techrology

Black-Box Testing

requirements
.

o>

input I events

KAIST fImatiZied 30

Black-Box Testing

« How Is functional validity tested?
 How Is system behavior and performance tested?
* What classes of input will make good test cases?

* |s the system particularly sensitive to certain input
values?

 How are the boundaries of a data class 1solated?

* What data rates and data volume can the system
tolerate?

« What effect will specific combinations of data
have on system operation?

KAIST Z3aci7ies 31

a Advanced Institute of Sclenca and Techrology

To understand the
objects that are
modeled in
software and the
relationships that
connect these
objects

Directed link
(link weight)

Node weight
(value

)

Undirected link

Parallel links

menu select generates
(generationtime < 1.0 sec)

__[document
window

allows editing

is represented as Attributes:

contains

background color: white

text color: default color
or preferences

document

tex
t

(b)

KAIST ti=nst7ziasl

Korea Advanced Institule of Sclence and Technology

32

Equivalence Partitioning

KAIST fImatiZied 33

Sample Equivalence Classes

Valid data
user supplied commands
responses to system prompts
file names
computational data
physical parameters

bounding values
initiation values
output data formatting

responses to error messages
graphical data (e.g., mouse picks)

Invalid data
data outside bounds of the program
physically impossible data
proper value supplied in wrong place

KAIST fImatiZied 4

Boundary Value Analysis

» Focus on selecting a set of test cases that exercise bounding
values

— Select test cases at the edges of the class
e Complementary to Equivalence Partitioning
» Derive test cases from output domain as well

ISET

JUENRES

tISries MOUSE:
PICKS

_ _ output
input domain domain

KAIST g=aus7iesy 35

Korea Advanced Institule of Sz

Comparison Testing

e Used only in situations in which the reliability
of software Is absolutely critical (e.g., human-
rated systems)

— Separate software engineering teams develop

Independent versions of an application using the
same specification

— Each version can be tested with the same test data
to ensure that all provide identical output

— Then all versions are executed in parallel with real-
time comparison of results to ensure consistency

KAIST 2zU%7Ies 36

a Advanced Institute of Sclenca and Techrology

Orthogonal Array Testing

e Used when the number of input
parameters Is small and the values that
each of the parameters may take are
clearly bounded

VA

o

X—»

One inputitem at a time

L9 orthogonal array

a Advanced Institute of Sclenca and Techrology

Model-Based Testing

— Recall that a behavioral model indicates how software will respond to
external events or stimuli.

— The inputs will trigger events that will cause the transition to occur.

KAIST EH=t7ies 38

a Advanced Institute of Sclenca and Techrology

Soltware Testing Patterns

e Testing patterns are described in much the
same way as design patterns (Chapter

e Example:

» Abstract: Once unit and integration tests have been
conducted, there is a need to determine whether the software
will perform in a manner that satisfies users. The
ScenarioTesting pattern describes a technique for
exercising the software from the user’s point of view. A failure
at this level indicates that the software has failed to meet a
user visible requirement. [Kan01]

a Advanced Institute of Sclenca and Techrology

KAIST fImatiZied 10

	Introduction to Software Engineering�(CS350)
	Testing Conventional Applications
	Testability
	What is a “Good” Test?
	Internal and External Views
	Test Case Design
	Exhaustive Testing
	Selective Testing
	Software Testing
	Black-box test vs. White-box test
	White-Box Testing
	Why Cover?
	Basis Path Testing
	Cyclomatic Complexity
	Basis Path Testing
	Basis Path Testing Notes
	Independent Paths?
	Cyclomatic Complexity
	Application Areas of CC
	Computation of CC
	Example: CC Computation
	Deriving Test Cases
	Graph Matrices
	Control Structure Testing
	Data Flow Testing
	Data Flow Testing – Cont.
	Loop Testing
	Loop Testing: Simple Loops
	Loop Testing: Nested Loops
	Black-Box Testing
	Black-Box Testing
	Graph-Based Methods
	Equivalence Partitioning
	Sample Equivalence Classes
	Boundary Value Analysis
	Comparison Testing
	Orthogonal Array Testing
	Model-Based Testing
	Software Testing Patterns
	Q & A

