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Testing Conventional
Applications




o Operability—It operates cleanly

* Observability—the results of each test case are readily
observed

o Controllability—the degree to which testing can be
automated and optimized

« Decomposability—testing can be targeted

« Simplicity—reduce complex architecture and logic to
simplify tests

« Stability—few changes are requested during testing

e Understandability—of the design

James Bach, 1994
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What IS a “Good” Tesl?

* A good test has a high probability of finding
an error

e A good test iIs not redundant.
« A good test should be “best of breed”

« A good test should be neither too simple nor
too complex
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Internal and External Views

* Any engineered product (and most other things)
can be tested in one of two ways:

— Knowing the specified function that a product has
been designed to perform, tests can be conducted
that demonstrate each function is fully operational
while at the same time searching for errors in each
function; [Black-box testing]

— Knowing the internal workings of a product, tests can
be conducted to ensure that "all gears mesh," that is,
Internal operations are performed according to
specifications and all internal components have been
adequately exercised. [White-box testing]
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"Bugs lurk in corners
and congregate at
boundaries ..."

Boris Beizer

OBJECTIVE to uncover errors
CRITERIA In a complete manner
CONSTRAINT with a minimum of effort and time
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Exhaustive Testing

loop <20 X

4 :

There are 10l possible paths! If we execute one
test per millisecond, it would take 3,170 years to
test this program!!
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selective Testing

loop <20 X
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Soitware Testing
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¥ Black—box test vs. White—box

Black—box test White—box test
o Functional or o (Glass—box or
behavioral testing structural testing
 Conducted at  Uses knowledge of
software interface the internal structure
e Examines some of the software
fundamental aspect ||* Examine procedural
Of a system detail (logical paths
. |Ignores internal logic|| @nd collaboration
of a software system|| ©/W components)
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...our goal is to ensure that all

statements and conditions have
been executed at least once ...
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?

logic errors and incorrect assumptions
are inversely proportional to a path's
execution probability

we often believe that a path is not
likely to be executed; in fact, reality is
often counter intuitive

typographical errors are random; it's
likely that untested paths will contain
some
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Basis Path Testing

* A white-box testing technigue

» Enable to derive a logical complexity measure of a procedural design
* Provide a guideline defining a basis set of execution paths

» Guarantee to execute every statement in the program at once

Q First, we compute the cyclomatic
complexity:

r number of simple decisions + 1

or
number of enclosed areas + 1

or
number of nodes — number of edges + 2

In this case, V(G) =4
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A number of industry studies have indicated
that the higher V(G), the higher the probability
or errors.

modules

modules in this range are
more error prone
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Next, we derive the
independent paths:

Since V(G) =4,
there are four paths

Path 1: 1,2,3,6,7,8
Path 2: 1,2,3,5,7,8
Path 3: 1,2,4,7,8

Path 4: 1,2,4,7,2,4,...7,8

Finally, we derive test

cases to exercise these

paths.
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" Basis Path Testing Notes

|:| you don't need a flow chart,
but the picture will help when
you trace program paths

:| count each simple logical test,
compound tests count as 2 or
more

] basis path testing should be
O applied to critical modules
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Independent Paths?

« Any path through the program that introduces
at least one new set of processing statements
or a new condition

e Test can be designed to force execution of
these paths (a basis set)

 Guaranteed to execute every statement at least
once
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A software metric that provides a quantitative
measure of the logical complexity of a
program

* Provides a single ordinal number (an upper
pound for the number of tests to achieve a
complete branch coverage

 Independent of language and language format

o Extended to encompass the design and
structural complexity of a system
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Application Areas oi C(

e Code development risk analysis.
« Change risk analysis in maintenance.
e Test Planning.

* Reengineering.
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)’ Computation of ((

1. V(G), Cyclomatic Complexity
= The number of regions in a flow graph, G

2. V(G)=E-N+2
Where E = No. of Edges and N = No. of Nodes

3. V(G)=P+1
Where P i1s the number of Predicated Nodes in a flow
graph, G
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utation

1. No. of Regions (R1,..,R4)
V(G) = 4

2. V(G)=11Edges -9 Nodes + 2
=4

3. V(G) =3 Predicate Nodes + 1 =
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Test (ases

e Summarizing:
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9 Graph Matrices

« A graph matrix Is a square matrix whose size
(1.e., number of rows and columns) is equal to
the number of nodes on a flow graph

e Each row and column corresponds to an
Identified node, and matrix entries correspond
to connections (an edge) between nodes.

* By adding a link weight to each matrix entry,
the graph matrix can become a powerful tool
for evaluating program control structure
during testing

KAIST =2nc7ias 23

a Advanced Institute of Sclenca and Techrology



control Structure Testing

— a test case design method
that exercises the logical conditions contained
In a program module

— selects test paths of a

program according to the locations of
definitions and uses of variables in the

program

24
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Data Flow Tesling

 The data flow testing method [Fra93] selects test paths of a program
according to the locations of definitions and uses of variables in the
program.

— Assume that each statement in a program is assigned a unique
statement number and that each function does not modify its
parameters or global variables. For a statement with S as its statement
number

 DEF(S) = {X | statement S contains a definition of X}
 USE(S) = {X | statement S contains a use of X}
- A of variable X is of the form [X, S, S'], where

S and S' are statement numbers, X is in DEF(S) and USE(S'), and the
definition of X in statement S is live at statement S'
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Data Flow
. Anomaly State
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9 Loop Testing

1

0]

*

_

Concatenated I

Loops Unstructured
Loops
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Minimum conditions—Simple Loops

1. skip the loop entirely

2. only one pass through the loop

3. two passes through the loop

4. m passes through the loop m <n
5. (n-1), n, and (n+1) passes through
the loop

where n is the maximum number
of allowable passes
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Loop Testing: Nested Loops

Nested Loops
Start at the innermost loop. Set all outer loops to their

minimum iteration parameter values.

Test the min+1, typical, max-1 and max for the
innermost loop, while holding the outer loops at their
minimum values.

Move out one loop and set it up as in step 2, holding all
other loops at typical values. Continue this step until
the outermost loop has been tested.

Concatenated Loops

If the loops are independent of one another
then treat each as a simple loop
else* treat as nested loops

endif*

for example, the final loop counter value of loop 1is
used to initialize loop 2.
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Black-Box Testing

requirements
.

o>

input I events
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Black-Box Testing

« How Is functional validity tested?
 How Is system behavior and performance tested?
* What classes of input will make good test cases?

* |s the system particularly sensitive to certain input
values?

 How are the boundaries of a data class 1solated?

* What data rates and data volume can the system
tolerate?

« What effect will specific combinations of data
have on system operation?
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To understand the
objects that are
modeled in
software and the
relationships that
connect these
objects

Directed link
(link weight)

Node weight
(value

)

Undirected link

Parallel links

menu select generates
(generationtime < 1.0 sec)

__[ document
window

allows editing

is represented as Attributes:
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background color: white

text color: default color
or preferences

document

tex
t

(b)
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Equivalence Partitioning
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Sample Equivalence Classes

Valid data
user supplied commands
responses to system prompts
file names
computational data
physical parameters

bounding values
initiation values
output data formatting

responses to error messages
graphical data (e.g., mouse picks)

Invalid data
data outside bounds of the program
physically impossible data
proper value supplied in wrong place
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Boundary Value Analysis

» Focus on selecting a set of test cases that exercise bounding
values

— Select test cases at the edges of the class
e Complementary to Equivalence Partitioning
» Derive test cases from output domain as well

ISET

JUENRES

tISries MOUSE:
PICKS

_ _ output
input domain domain
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Comparison Testing

e Used only in situations in which the reliability
of software Is absolutely critical (e.g., human-
rated systems)

— Separate software engineering teams develop

Independent versions of an application using the
same specification

— Each version can be tested with the same test data
to ensure that all provide identical output

— Then all versions are executed in parallel with real-
time comparison of results to ensure consistency
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Orthogonal Array Testing

e Used when the number of input
parameters Is small and the values that
each of the parameters may take are
clearly bounded

VA

o

X—»

One inputitem at a time

L9 orthogonal array
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Model-Based Testing

— Recall that a behavioral model indicates how software will respond to
external events or stimuli.

— The inputs will trigger events that will cause the transition to occur.
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Soltware Testing Patterns

e Testing patterns are described in much the
same way as design patterns (Chapter

e Example:

» Abstract: Once unit and integration tests have been
conducted, there is a need to determine whether the software
will perform in a manner that satisfies users. The
ScenarioTesting pattern describes a technique for
exercising the software from the user’s point of view. A failure
at this level indicates that the software has failed to meet a
user visible requirement. [Kan01]
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