
Introduction to Software Engineering
(CS350)

Jongmoon Baik

Lecture 18

2

Testing OO Applications

3

OO Testing

• To adequately test OO systems, three
things must be done:
– the definition of testing must be broadened to

include error discovery techniques applied to
object-oriented analysis and design models

– the strategy for unit and integration testing
must change significantly, and

– the design of test cases must account for the
unique characteristics of OO software.

4

‘Testing’ OO Models

• The review of OO analysis and design models is
especially useful because the same semantic
constructs (e.g., classes, attributes, operations,
messages) appear at the analysis, design, and
code level

• Therefore, a problem in the definition of class
attributes that is uncovered during analysis will
circumvent side affects that might occur if the
problem were not discovered until design or
code (or even the next iteration of analysis).

5

Correctness of OO Models

• During analysis and design, semantic correctness can
be assessed based on the model’s conformance to the
real world problem domain.

• If the model accurately reflects the real world (to a level
of detail that is appropriate to the stage of development
at which the model is reviewed) then it is semantically
correct.

• To determine whether the model does, in fact, reflect
real world requirements, it should be presented to
problem domain experts who will examine the class
definitions and hierarchy for omissions and ambiguity.

• Class relationships (instance connections) are evaluated
to determine whether they accurately reflect real-world
object connections.

6

Class Model Consistency

• Revisit the CRC model and the object-relationship
model.

• Inspect the description of each CRC index card to
determine if a delegated responsibility is part of the
collaborator’s definition.

• Invert the connection to ensure that each collaborator
that is asked for service is receiving requests from a
reasonable source.

• Using the inverted connections examined in the
preceding step, determine whether other classes might
be required or whether responsibilities are properly
grouped among the classes.

• Determine whether widely requested responsibilities
might be combined into a single responsibility.

7

OO Testing Strategies

• Unit testing
– the concept of the unit changes
– the smallest testable unit is the encapsulated class
– a single operation can no longer be tested in isolation (the

conventional view of unit testing) but rather, as part of a class
• Integration Testing

– Thread-based testing integrates the set of classes required to respond
to one input or event for the system

– Use-based testing begins the construction of the system by testing
those classes (called independent classes) that use very few (if any) of
server classes. After the independent classes are tested, the next layer
of classes, called dependent classes

– Cluster testing [McG94] defines a cluster of collaborating classes
(determined by examining the CRC and object-relationship model) is
exercised by designing test cases that attempt to uncover errors in the
collaborations.

8

OO Testing Strategies

• Validation Testing
– details of class connections disappear
– draw upon use cases (Chapters 5 and 6) that

are part of the requirements model
– Conventional black-box testing methods

(Chapter 18) can be used to drive validation
tests

9

OOT Methods

Berard [Ber93] proposes the following approach:

1. Each test case should be uniquely identified and should be explicitly
associated with the class to be tested,

2. The purpose of the test should be stated,
3. A list of testing steps should be developed for each test and should

contain [BER94]:
a. a list of specified states for the object that is to be tested
b. a list of messages and operations that will be exercised as
a consequence of the test
c. a list of exceptions that may occur as the object is tested
d. a list of external conditions (i.e., changes in the environment

external to the software that must exist in order to properly
conduct the test)

e. supplementary information that will aid in understanding or
implementing the test.

10

Testing Methods

• Fault-based testing
– The tester looks for plausible faults (i.e., aspects of the implementation

of the system that may result in defects). To determine whether these
faults exist, test cases are designed to exercise the design or code.

• Class Testing and the Class Hierarchy
– Inheritance does not obviate the need for thorough testing of all derived

classes. In fact, it can actually complicate the testing process.

• Scenario-Based Test Design
– Scenario-based testing concentrates on what the user does, not what the

product does. This means capturing the tasks (via use-cases) that the
user has to perform, then applying them and their variants as tests.

11

OOT Methods: Random Testing

• Random testing
– identify operations applicable to a class
– define constraints on their use
– identify a minimum test sequence

• an operation sequence that defines the minimum life
history of the class (object)

– generate a variety of random (but valid) test
sequences

• exercise other (more complex) class instance life histories

12

OOT Methods: Partition Testing

• Partition Testing
– reduces the number of test cases required to test a class in

much the same way as equivalence partitioning for
conventional software

– state-based partitioning
• categorize and test operations based on their ability to change the

state of a class
– attribute-based partitioning

• categorize and test operations based on the attributes that they use
– category-based partitioning

• categorize and test operations based on the generic function each
performs

13

OOT Methods: Inter-Class Testing

• Inter-class testing
– For each client class, use the list of class operators to

generate a series of random test sequences. The operators
will send messages to other server classes.

– For each message that is generated, determine the
collaborator class and the corresponding operator in the
server object.

– For each operator in the server object (that has been
invoked by messages sent from the client object),
determine the messages that it transmits.

– For each of the messages, determine the next level of
operators that are invoked and incorporate these into the
test sequence

14

OOT Methods: Behavior Testing

empty
acctopen setup Accnt

set up
acct

deposit
(initial)

working
acct

withdrawal
(final)

dead
acct close

nonworking
acct

deposit

withdraw
balance

credit
accntInfo

Figure 14.3 St at e diagram f or Account class (adapt ed f rom [KIR94])

The tests to be
designed should
achieve all state
coverage [KIR94].
That is, the
operation
sequences should
cause the
Account class to
make transition
through all
allowable states

15

Q & A

	Introduction to Software Engineering�(CS350)
	Testing OO Applications
	OO Testing
	‘Testing’ OO Models
	Correctness of OO Models
	Class Model Consistency
	OO Testing Strategies
	OO Testing Strategies
	OOT Methods
	Testing Methods
	OOT Methods: Random Testing
	OOT Methods: Partition Testing
	OOT Methods: Inter-Class Testing
	OOT Methods: Behavior Testing
	Q & A

