
Introduction to Software Engineering
(CS350)

Jongmoon Baik

Lecture 20

2

Software M&M – II
Process & Project Metrics

3

A Good Manager Measures

process

measurement

What do we
use as a
basis?
• size?
• function?

project metrics

process metrics

product

product metrics

4

Why Do We Measure?

• assess the status of an ongoing project
• track potential risks
• uncover problem areas before they go “critical,”
• adjust work flow or tasks,
• evaluate the project team’s ability to control

quality of software work products.

5

Process Measurement

• We measure the efficacy of a software process
indirectly.
– That is, we derive a set of metrics based on the outcomes

that can be derived from the process.
– Outcomes include

• measures of errors uncovered before release of the software
• defects delivered to and reported by end-users
• work products delivered (productivity)
• human effort expended
• calendar time expended
• schedule conformance
• other measures.

• We also derive process metrics by measuring the
characteristics of specific software engineering tasks.

6

Process Metrics Guidelines

• Use common sense and organizational sensitivity when
interpreting metrics data.

• Provide regular feedback to the individuals and teams who
collect measures and metrics.

• Don’t use metrics to appraise individuals.
• Work with practitioners and teams to set clear goals and

metrics that will be used to achieve them.
• Never use metrics to threaten individuals or teams.
• Metrics data that indicate a problem area should not be

considered “negative.” These data are merely an indicator for
process improvement.

• Don’t obsess on a single metric to the exclusion of other
important metrics.

7

Software Process Improvement

SPI

Process model

Improvement goals

Process metrics

Process improvement
recommendations

8

Process Metrics

• Quality-related
– focus on quality of work products and deliverables

• Productivity-related
– Production of work-products related to effort expended

• Statistical SQA data
– error categorization & analysis

• Defect removal efficiency
– propagation of errors from process activity to activity

• Reuse data
– The number of components produced and their degree of reusability

9

Project Metrics

• used to minimize the development schedule by making the
adjustments necessary to avoid delays and mitigate potential
problems and risks

• used to assess product quality on an ongoing basis and, when
necessary, modify the technical approach to improve quality.

• every project should measure:
– inputs—measures of the resources (e.g., people, tools) required to do

the work.
– outputs—measures of the deliverables or work products created

during the software engineering process.
– results—measures that indicate the effectiveness of the deliverables.

10

Typical Project Metrics

• Effort/time per software engineering task
• Errors uncovered per review hour
• Scheduled vs. actual milestone dates
• Changes (number) and their characteristics
• Distribution of effort on software engineering

tasks

11

Typical Size-Oriented Metrics

• errors per KLOC (thousand lines of code)
• defects per KLOC
• $ per LOC
• pages of documentation per KLOC
• errors per person-month
• errors per review hour
• LOC per person-month
• $ per page of documentation

12

Typical Function-Oriented Metrics

• errors per FP (thousand lines of code)
• defects per FP
• $ per FP
• pages of documentation per FP
• FP per person-month

13

Comparing LOC and FP

Programming LOC per Function point
Language avg. median low high

Ada 154 - 104 205
Assembler 337 315 91 694
C 162 109 33 704
C++ 66 53 29 178
COBOL 77 77 14 400
Java 63 53 77 -
JavaScript 58 63 42 75
Perl 60 - - -
PL/1 78 67 22 263
Powerbuilder 32 31 11 105
SAS 40 41 33 49
Smalltalk 26 19 10 55
SQL 40 37 7 110
Visual Basic 47 42 16 158

Representative values developed by QSM

14

Why Opt for FP?

• Programming language independent
• Used readily countable characteristics that

are determined early in the software process
• Does not “penalize” inventive (short)

implementations that use fewer LOC that
other more clumsy versions

• Makes it easier to measure the impact of
reusable components

15

Object-Oriented Metrics

• Number of scenario scripts (use-cases)
• Number of support classes (required to

implement the system but are not immediately
related to the problem domain)

• Average number of support classes per key
class (analysis class)

• Number of subsystems (an aggregation of
classes that support a function that is visible to
the end-user of a system)

16

WebApp Project Metrics

• Number of static Web pages (the end-user has no control over
the content displayed on the page)

• Number of dynamic Web pages (end-user actions result in
customized content displayed on the page)

• Number of internal page links (internal page links are pointers
that provide a hyperlink to some other Web page within the
WebApp)

• Number of persistent data objects
• Number of external systems interfaced
• Number of static content objects
• Number of dynamic content objects
• Number of executable functions

17

Measuring Quality

• Correctness — the degree to which a program
operates according to specification

• Maintainability—the degree to which a
program is amenable to change

• Integrity—the degree to which a program is
impervious to outside attack

• Usability—the degree to which a program is
easy to use

18

Defect Removal Efficiency

where:
E is the number of errors found before delivery of the
software to the end-user
D is the number of defects found after delivery.

DRE = E /(E + D)

19

Metrics for Small Organizations

• time (hours or days) elapsed from the time a request is made
until evaluation is complete, tqueue.

• effort (person-hours) to perform the evaluation, Weval.
• time (hours or days) elapsed from completion of evaluation to

assignment of change order to personnel, teval.
• effort (person-hours) required to make the change, Wchange.
• time required (hours or days) to make the change, tchange.
• errors uncovered during work to make change, Echange.
• defects uncovered after change is released to the customer

base, Dchange.

20

Establishing a Metrics Program
• Identify your business goals.
• Identify what you want to know or learn.
• Identify your subgoals.
• Identify the entities and attributes related to your subgoals.
• Formalize your measurement goals.
• Identify quantifiable questions and the related indicators that

you will use to help you achieve your measurement goals.
• Identify the data elements that you will collect to construct

the indicators that help answer your questions.
• Define the measures to be used, and make these definitions

operational.
• Identify the actions that you will take to implement the

measures.
• Prepare a plan for implementing the measures.

21

Q & A

	Introduction to Software Engineering�(CS350)
	Software M&M – II�Process & Project Metrics
	A Good Manager Measures
	Why Do We Measure?
	Process Measurement
	Process Metrics Guidelines
	Software Process Improvement
	Process Metrics
	Project Metrics
	Typical Project Metrics
	Typical Size-Oriented Metrics
	Typical Function-Oriented Metrics
	Comparing LOC and FP
	Why Opt for FP?
	Object-Oriented Metrics
	WebApp Project Metrics
	Measuring Quality
	Defect Removal Efficiency
	Metrics for Small Organizations
	Establishing a Metrics Program
	Q & A

