
Introduction to Software Engineering
(CS350)

Jongmoon Baik

Lecture 21

2

Maintenance
& Re-Engineering

3

Software Maintenance

• Software is released to end-users, and
– within days, bug reports filter back to the software

engineering organization.
– within weeks, one class of users indicates that the

software must be changed so that it can
accommodate the special needs of their environment.

– within months, another corporate group who wanted
nothing to do with the software when it was released,
now recognizes that it may provide them with
unexpected benefit. They’ll need a few enhancements
to make it work in their world.

• All of this work is software maintenance

4

Maintainable Software

• Maintainable software exhibits effective modularity
• It makes use of design patterns that allow ease of

understanding.
• It has been constructed using well-defined coding

standards and conventions, leading to source code that
is self-documenting and understandable.

• It has undergone a variety of quality assurance
techniques that have uncovered potential maintenance
problems before the software is released.

• It has been created by software engineers who
recognize that they may not be around when changes
must be made.
– Therefore, the design and implementation of the software must

“assist” the person who is making the change

5

Software Supportability

• “the capability of supporting a software system over its
whole product life.
– This implies satisfying any necessary needs or requirements, but

also the provision of equipment, support infrastructure, additional
software, facilities, manpower, or any other resource required to
maintain the software operational and capable of satisfying its
function.” [SSO08]

• The software should contain facilities to assist support
personnel when a defect is encountered in the
operational environment (and make no mistake, defects
will be encountered).

• Support personnel should have access to a database
that contains records of all defects that have already
been encountered—their characteristics, cause, and
cure.

6

Reengineering

Business
processes

IT
systems Software

applicationsReengineering

7

Business Process Reengineering

• Business definition. Business goals are identified within the context of
four key drivers: cost reduction, time reduction, quality improvement,
and personnel development and empowerment.

• Process identification. Processes that are critical to achieving the goals
defined in the business definition are identified.

• Process evaluation. The existing process is thoroughly analyzed and
measured.

• Process specification and design. Based on information obtained
during the first three BPR activities, use-cases are prepared for each
process that is to be redesigned.

• Prototyping. A redesigned business process must be prototyped before
it is fully integrated into the business.

• Refinement and instantiation. Based on feedback from the prototype,
the business process is refined and then instantiated within a business
system.

8

Business Process Reengineering

9

BPR Principles

• Organize around outcomes, not tasks.
• Have those who use the output of the process perform

the process.
• Incorporate information processing work into the real

work that produces the raw information.
• Treat geographically dispersed resources as though

they were centralized.
• Link parallel activities instead of integrated their

results. When different
• Put the decision point where the work is performed,

and build control into the process.
• Capture data once, at its source.

10

Software Reengineering

Forward
engineering

Data
restructuring

code
restructuring

reverse
engineering

document
restructuring

inventory
analysis

11

Inventory Analysis

• build a table that contains all applications
• establish a list of criteria, e.g.,

– name of the application
– year it was originally created
– number of substantive changes made to it
– total effort applied to make these changes
– date of last substantive change
– effort applied to make the last change
– system(s) in which it resides
– applications to which it interfaces, ...

• analyze and prioritize to select candidates for
reengineering

12

Document Restructuring

• Weak documentation is the trademark of many legacy
systems.

• But what do we do about it? What are our options?
• Options …

– Creating documentation is far too time consuming. If the system
works, we’ll live with what we have. In some cases, this is the correct
approach.

– Documentation must be updated, but we have limited resources. We’ll
use a “document when touched” approach. It may not be necessary to
fully redocument an application.

– The system is business critical and must be fully redocumented. Even
in this case, an intelligent approach is to pare documentation to an
essential minimum.

13

Reverse Engineering

dirty source code

restructure
code

extract
abstractions

refine
&

simplify

clean source code

initial specification

final specification

processing

interface

database

14

Code Restructuring

• Source code is analyzed using a restructuring
tool.

• Poorly design code segments are redesigned
• Violations of structured programming

constructs are noted and code is then
restructured (this can be done automatically)

• The resultant restructured code is reviewed and
tested to ensure that no anomalies have been
introduced

• Internal code documentation is updated.

15

Data Restructuring
• Unlike code restructuring, which occurs at a relatively low

level of abstraction, data structuring is a full-scale
reengineering activity

• In most cases, data restructuring begins with a reverse
engineering activity.
– Current data architecture is dissected and necessary data models are

defined (Chapter 9).
– Data objects and attributes are identified, and existing data structures

are reviewed for quality.
– When data structure is weak (e.g., flat files are currently implemented,

when a relational approach would greatly simplify processing), the data
are reengineered.

• Because data architecture has a strong influence on program
architecture and the algorithms that populate it, changes to the
data will invariably result in either architectural or code-level
changes.

16

Forward Engineering

1. The cost to maintain one line of source code may be 20 to 40 times
the cost of initial development of that line.

2. Redesign of the software architecture (program and/or data
structure), using modern design concepts, can greatly facilitate future
maintenance.

3. Because a prototype of the software already exists, development
productivity should be much higher than average.

4. The user now has experience with the software. Therefore, new
requirements and the direction of change can be ascertained with
greater ease.

5. CASE tools for reengineering will automate some parts of the job.

6. A complete software configuration (documents, programs and data)
will exist upon completion of preventive maintenance.

17

Economics of Reengineering-I

• A cost/benefit analysis model for reengineering has
been proposed by Sneed [Sne95]. Nine parameters are
defined:

• P1 = current annual maintenance cost for an application.
• P2 = current annual operation cost for an application.
• P3 = current annual business value of an application.
• P4 = predicted annual maintenance cost after reengineering.
• P5 = predicted annual operations cost after reengineering.
• P6 = predicted annual business value after reengineering.
• P7 = estimated reengineering costs.
• P8 = estimated reengineering calendar time.
• P9 = reengineering risk factor (P9 = 1.0 is nominal).
• L = expected life of the system.

18

Economics of Reengineering-II

• The cost associated with continuing maintenance of a
candidate application (i.e., reengineering is not performed) can
be defined as

Cmaint = [P3 - (P1 + P2)] x L

• The costs associated with reengineering are defined using the
following relationship:

Creeng = [P6 - (P4 + P5) x (L - P8) - (P7 x P9)]
`

• Using the costs presented in equations above, the overall
benefit of reengineering can be computed as

cost benefit = Creeng - Cmaint

19

Q & A

	Introduction to Software Engineering�(CS350)
	Maintenance �& Re-Engineering
	Software Maintenance
	Maintainable Software
	Software Supportability
	Reengineering
	Business Process Reengineering
	Business Process Reengineering
	BPR Principles
	Software Reengineering
	Inventory Analysis
	Document Restructuring
	Reverse Engineering
	Code Restructuring
	Data Restructuring
	Forward Engineering
	Economics of Reengineering-I
	Economics of Reengineering-II
	Q & A

