
• Measurement of effectiveness in terms of dollar → Called Total Value (TV) • Net effectiveness-cost difference as a useful decision criterion - Each transaction per second of processing capability: \$2,500 worth - C = \$260K, TV= \$450K • Net Value (NV) = TV -C = \$450K - \$260K = \$190K

Marginal Analysis: Definitions X — Activity level of an alternative C(X) — Cost of alternative TV(X) — Total value of alternative (in same units as cost) NV(X) NV(X) — Net value of alternative NV(X) = TV(X) - C(X) — Marginal net value MNV(X) = $\frac{d(NV)}{dx}$ = $\frac{d(TV)}{dx}$ - $\frac{dC}{dx}$

Another Decision Problem: TPS

- Assuming use of composite option, we will acquire 5 processors/system and run option A for 2 years
- Which acquisition option should we choose:
 - -A1: Rent processors for 2 years at \$1200/Mo.
 - -A2: Purchase processors for \$50,000. Resell them for \$25,000 after 2 years

KAIST 한국과학기술원

۸

- Simple Calculation
 - Cost of A1 = \$1200/mo * 24 mo = \$28,800
 - Cost of A2 = \$5,000 \$25,000 = \$25,000
- Led to wrong conclusion by a faulty assumption
 - "A dollar available to us 24 months from now is the same as a dollar available to us now"

KAIST 한국과학기술원

Interest Calculations

- Assumption: Interest Rate: 9%/yr (or 0.75%/mo)
- On Option A2, 25K tied up for 2 years
- How much would this be worth at an interest rate of .75%/month?

 Lost the opportunity to earn almost \$5K by having \$25 K tied up

KAIST 한국과학기술원

11

Present Value Calculation

• What is the present value X of the \$25K we will receive in 24 months?

$$V(X, 24) = X(1.0075)^{24} = $25K$$

$$X = \frac{\$25K}{(1.0075)^{24}} = \$20,896$$
 PV (F, r, n) = $\frac{F}{(1 + r)^n}$

PV (\$25K, .0075, 24) =
$$\frac{$25K}{(1.0075)^{24}}$$

F: cash flow
r: interest rate
n: number of time peri

n: number of time period D: discount rate $PV (F, D, n) = FD^n$

KAIST 한국과학기술원

Present Value of A Series of Cash Flows

- Option A1, pay \$1200 at the beginning of each month
- How much is this worth in present value?

```
PV<sub>S</sub> ($1200, D, 1) = $1200
```

$$PV_S$$
 (\$1200, D, 3) = \$1200 (1 + D + D²)

. . .

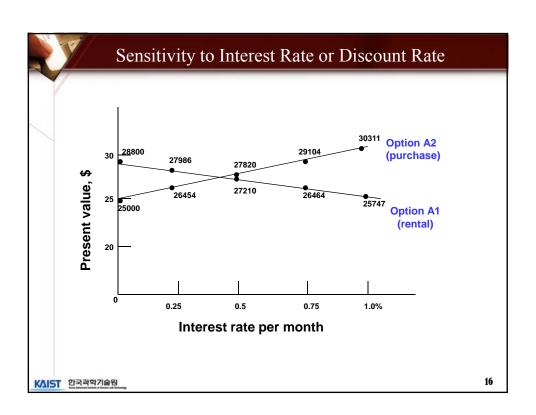
$$PV_S$$
 (\$1200, D, 24) = \$1200 (1 + D + ... + D²³)
= \$1200 (1 - D²⁴) / (1 - D)

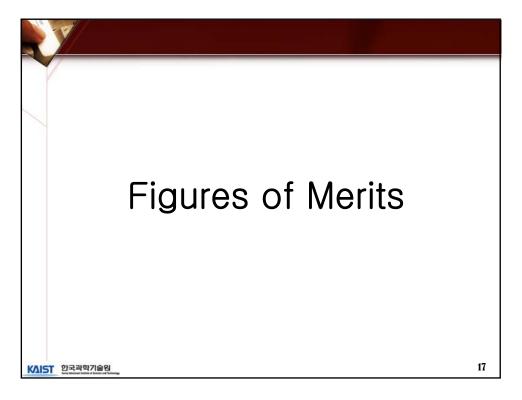
For
$$D = 1/1.0075 = .9925558$$

$$PV_S$$
 (\$1200, 1/1.0075, 24) = \$26,464

KAIST 한국과학기술원

13

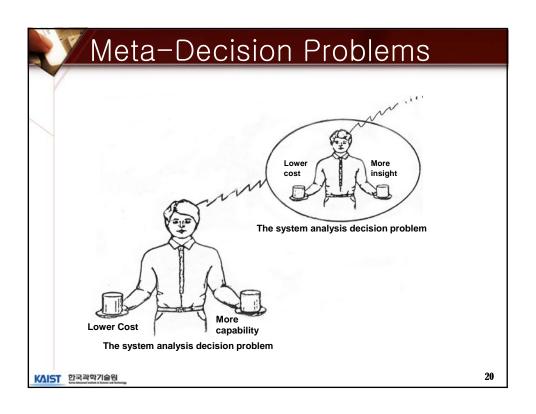

Present Value of A Series of Cash Flows


- *m* equal cash flows or payments *p*
 - At the beginning of each time period
- Constant discount rate: D

$$PV_S(p, D, m) = p[(1-D^m)/(1-D)]$$

KAIST 한국과학기술원

	Simple Analysis	Present Value Analysis
ost of Option A1	\$28,800	\$26,464
ost of Option A2	\$25,000	\$29,104



TPS: S/W Package Selection

- Choose best vendor operating system
 - System A Standard OS
 - System A Plus
 - Better measurement, and diagnostic capabilities
 - Additional price \$5 K

KAIST 한국과학기술원

	Alte	ernative
Criterion	System A	System A Plus
. Added Cost	0	\$5 K
. Processor overhead	200	200
Multiprocessor overhead	80	80
. Measurement capability	Poor	Good
i. Trace capability	None	Adequate
6. Diagnostics, error messages	Adequate	Good
7. Maintenance support	Marginal	Good
3. Accounting system	Adequate	Very Good
). Usage summaries	None	Good
0. Documentation	Good	Adequate

Weighted Sum Figure of Merit

- Assign weight W_i to criterion i $\Sigma_i W_i = 1$
- For each option j and criterion i, assign rating r_{ij} $(0 \le r_{ij} \le 10)$
- Compute figure of merit for each option j $F_j \!\!\! = \Sigma \; w_{_i} r_{_{ij}}$

KAIST 한국과학기술원

2:

TPS Figure of Merit Analysis

		System A			System A Plus			
Criterion	Weight	Characteristic	Rating	Weighted Rating	Characteristic	Rating	Weighted Rating	
1. Added Cost	30	\$0	10	300	\$40K	4	120	
2. Processor overhead	10	200	3	30	200	3	30	
3. Multiprocessor overhead	15	80	3	45	80	3	45	
4. Measurement capability	7	Poor	2	14	Good	8	56	
5. Trace Capability	8	None	0	0	Adequate	6	48	
6. Diagnostics, error msgs	10	Adequate	6	60	Good	8	80	
7. Maintenance Support	10	Marginal	4	40	Good	8	80	
8. Accounting system	2	Adequate	6	12	Very good	10	20	
9. Usage summaries	3	None	0	0	Good	8	24	
10. Documentation	5	Good	8	40	Adequate	6	30	
Total	100			541			533	

What if we assign a rating of 5 rather than 4 to the cost of System A Plus? -Hard to get a secure feeling about choosing one system over another on the basis of this analysis

KAIST 한국과학기술원

Delivered System Capability (DSC)

Figure of Merit

DSC = (SC) (DC) (AV)

- SC: System Capability = $\sum W_i r_i$
 - Defined as a hierarchical weighted sum of individual criterion ratings
 - W_i: Weight assigned to i th criterion (add up to 1.0)
 - r_i: Ratings assigned on a scale of 0.0 to 1.0
- DC: Delivered Capacity
 - Defined as the actual computer capacity
- AV: Availability
 - Defined as the fraction of time that the computer system is available
 - Exclude time spent on preventive maintenance and system down time

KAIST 한국과학기술원

23

The DSC Figure of Merit

- Dimensionless
- Covers effectiveness only
- SC component handles many criteria
- DC, AV components apply multiplicatively

KAIST 한국과학기술원

Gains from System A Plus - I

• Reduction of \$30 K maintenance cost

- Basic cost: (\$135K)
- Maintenance Support: 10% (-\$3K)
- Diagnostics, Error Msgs.: 5% (-1.5K)
- Documentation (worse): -5% (1.5K)
\$132K

• Delivered capacity increase via measurement: 3%

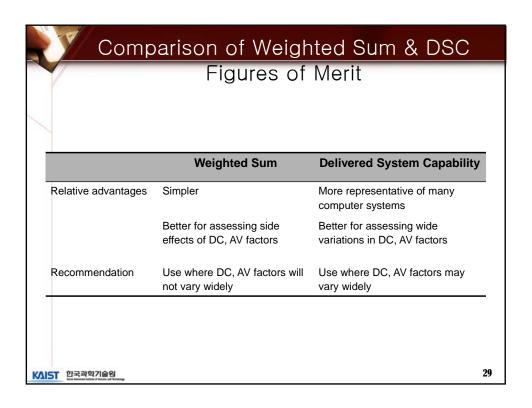
 $180.0 \text{ tr/sec} (1.03) == \rightarrow 185.4 \text{ tr/sec}$

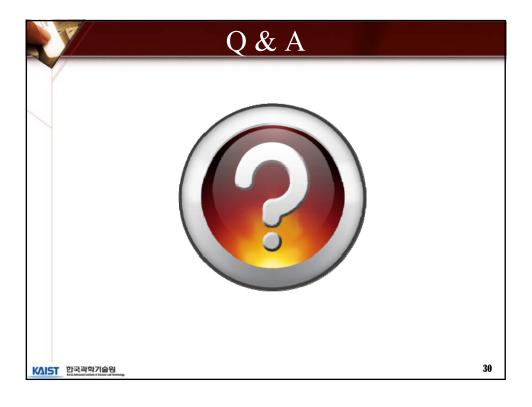
 Availability increase via diagnostics, error messages, trace capability: 50% less downtime

KAIST 한국과학기술원

25

Gains from System A Plus - II


System Capability


Criteria			em A	System A Plus		
Orneria	Weight	Rating	Score	Rating	Score	
Basic TPS Functions	0.95	1.0	0.950	1.0	0.950	
Accounting Systems	0.01	0.6	0.006	1.0	0.010	
Usage Summaries	0.01	0.0	0.000	0.8	0.008	
OS Documentation	0.03	0.8	0.024	0.4	0.012	
Total			0.980		0.980	

KAIST 한국과학기술원

TPS Comparison: DSC Criterion System A System A Plus 0.980 0.980 System capability (SC) 180 185.4 Delivered capability (DC) Availability (AV) 0.975 0.95 Delivered system capability (DSC)=(SC)(DC)(AV)167.6 177.1 \$130K \$132K Capability/Cost ratio 1.29 1.34 27 KAIST 한국과학기술원

Revised TPS Weighted Sum Analysis								
		Sy	stem A		System A Plus			
Criterion	Weight	Characteristic	Rating	Weighted Rating	Characteristic	Rating	Weighted Rating	
1. System capability (SC)	40	0.980	9	360	0.980	9	360	
2. Delivered capacity (DC)	30	180	8	240	185.4	9	270	
3. Availability (AV)	30	0.950	7	210	0.975	9	270	
Total	100			810			900	
KAIST 한국과학기술임							28	

