
2016-05-23

1

Software Engineering Economics

(CS656)

Software Engineering Economics

(CS656)

Jongmoon Baik

Software Quality Management

2

What is SW Quality?

• “The degree to which a system, system component, or process meet
specified requirements (customer or user needs, or expectation” – IEEE

Glossary of Software Terminology

• “Conformance to explicitly stated functional and performance
requirements, explicitly documented standards, and implicit characteristics
that are expected of all professionally developed software” – Roger
Pressman, “Software Engineering”

• Related to the amount a customer is willing to pay for it

• Two aspects of software quality

– Product quality

– Process quality

2016-05-23

2

3

Qiality Mgmt. Emcompasses:

• Software Quality Assurance (SQA)

• Specific quality assurance and quality control tasks
– Formal technical reviews and a mutitiered testing strategy

• Effective software engineering practices
– Methods and tools

• Control of all software work products and the changes made to
them

• Procedure to ensure compliance with software development
standards (when applicable)

• Measurement and reporting mechanisms

4

Quality of Design vs. Quality of Conformance

• Quality of Design – “the characteristics that
the designers specify for an item”
– Requirements, specifications, the design of the

system

• Quality of Conformance – “the degree to
which the design specifications are followed
during manufacturing”
– An issue focused primarily on implementation

2016-05-23

3

5

How to Achieve Software Quality?

Software Life CycleSoftware Life Cycle

SQA

V&V S/W Testing

• Introduce more precision into the dev. process

• Modern Dev. Techniques

• Software Peer Reviews

• Test effort reduction by modular design

• etc.

Software Engineering Methods

6

Software Quality Assurance

• A set of auditing and reporting functions
– To assess the effectiveness and completeness of

quality control activities

• Primary goal of SQA
– To provide management with data necessary to be

informed about product quality
• Gain insight and confidence about whether product

quality is meeting its goal

2016-05-23

4

7

Cost of Quality

• “All costs incurred in the pursuit of quality or in performing quality-related
activities”

– Provide a baseline for the current cost of quality

– Identify opportunities for the quality cost reduction

– Provide a normalized basis of comparison (on a dollar basis)

• Four types of Quality Cost
– Prevention Cost

• Quality planning, formal technical reviews, test equipments, and training

– Appraisal Cost
• In-process and inter-process inspection, equipment calibration, maintenance, and testing

– Internal Failure Cost
• Rework, repair, and failure mode analysis

– External Failure Cost
• Complaint resolution, product return and replacement , help line support, and warranty work

8

COQ & CMM

0

10

20

30

40

50

60

C
o

st
 a

s
a

 P
e

rc
e

n
t

o
f

D
e

ve
lo

p
m

e
n

t

1 2 3 4 5
SEI CMM Level

Prevention Appraisal Int Failure Ext Failure TCoSQ

Knox’s Theoretical Model for Cost of Software Quality
(Digital Technical Journal, vol.5, No. 4., Fall 1993, Stephen T. Knox.)

2016-05-23

5

9

Relative Cost to Fix an Error

Phase in Which defect was fixed

10

20

50

100

200

500

1000

R
el

at
iv

e
co

st
 t

o
 f

ix
 d

ef
ec

t

2
1

5

Requirements Design Code Development Acceptance Operation
test test

Smaller software projects

Larger software projects

• Median (TRW survey)

80%

20%

SAFEGUARD

GTE

IBM-SSD

•
•

•

•

•

•

Barry Boehm, “Software Engineering Economics”, 1981

• Dramatic increase as we go from prevention to detection to internal failure
to external failure costs

10

Activities of SQA

• Prepares an SQA plan for a project

• Participates in the development of the project’s software process

description

• Reviews software engineering activities to verify compliance with the

defined software process

• Audits designated software work products to verify compliance with those

defined as part of the software process

• Ensures that deviations in software work and work products are

documented and handled according to a documented procedure

• Records any noncompliance and reports to senior management

2016-05-23

6

11

What is a Peer Review?

• “A type of software review in which a work product is
examined by its author and/or one or more colleagues of its
author, in order to evaluate its technical content and
quality.” - Wikipedia
– Software Project Plan, Requirement Specification, Design, Code, Test

Process, Test Case, etc.

• “The review of work products performed by peers durin
g development of the work products to identify defects for
removal.”
– CMMI Guidelines for Process Integration and Product Improvement, Addison

Wesley, 2003

12

Objectives of Review

• To verify the work product meets requirements

• To detect and remove defects from the software work

products early and efficiently

• To gain confidence in work products

• To prevent their leakage into field operations

• To reduce risks

2016-05-23

7

13

Benefits of Software Peer Reviews

• Get another perspective
– Finding defects can be easier for someone who

hasn’t seen the artifact before and doesn’t have
preconceived ideas about its correctness

• Knowledge transfer about:
– software artifacts and defect detection

• Detect and Remove errors early
– Dramatic cost reduction to fix them

• Reduce rework and testing effort
– overall development effort reduction

14

Formal/Informal Review

• Formal Review:
– Highly structured process for preparation, meeting protocol, data collection, and post

meeting activities
– Table-top meeting oriented
– Excellent for ensuring final product quality and standards
– Performed on complete artifacts
– e.g.: Software Fagan Inspection, Formal Technical Review…

• Informal Review:
– Less structure, formality, and rigidity
– More open discussion (peer review)
– Table-top or presentation oriented
– Excellent for initial artifact presentation, artifact discussion, or selection of alternatives
– Performed on incomplete artifacts
– e.g.: Walkthrough…

• Both formal and informal inspections have their place in a
project

2016-05-23

8

15

Defect Amplification & Removal

• A hypothetical Example: No Review vs. W/ Review

16

Software Inspection

• Suggested by Michael Fagan (IBM) in 1976

• Comprised of 7 Operation stages

• Its objectives are to:
– Find all the defects in the work product that is examined
– Find all the systemic defects in the process that created defects in the

work product.

• It also enabled:
– Measurement of defects
– Management of defect rework
– Removal of systemic defects from the development process

2016-05-23

9

17

Inspection Process

18

Review Guidelines

• Review the product, not the producer

• Set an agenda and maintain it

• Limit debate and rebuttal

• Enunciate problem area, but don’t attempt to solve every problem noted

• Take written notes

• Limit the number of participants and insist upon advance preparation

• Develop a checklist for each product that is likely to be reviewed

• Allocate resources and schedule time for reviews

• Conduct meaningful training for all reviewers

• Review your early reviews

2016-05-23

10

19

Example: Requirement Checklist

1. Do requirements exhibit distinction between functions and data?

2. Do requirements define all the information to be displayed to users?

3. Do requirements address system and user response to error condition?

4. Is each requirement stated clearly, concisely, and unambiguously?

5. Is each requirement testable?

6. Are there ambiguous or implied requirements?

7. Are there conflicting requirements?

8. Are there areas not addressed in the Software Requirement Specification (SRS)

that need to be?

9. Are performance requirements (such as response time, data storage requirements)

stated?

………………

20

Example: Code Checklist

1. Data (DA)
Is each variable correctly typed?
Is each variable initialized before use?
Is the initialization appropriate for the type?
Can global variables be made local?
Are buffers appropriately sized?
Are buffer overflows checked?
Is dynamically allocated memory freed?

2. Interface (IF)
Are appropriate values returned from functions?
Do function calls have correct parameter types/values?
Are return values tested?
Are parameters passed by reference modified correctly?
Are parameters passed by value not modified?

3. Functionality (FN)
Do comparisons use the correct logic?
Do loops terminate?
Do all loops iterate the correct number of times (no off-by-one errors)?
Is behavior correct if a loop is never entered?
Is there dead (unreachable) code?
Do all switch statements have a default case?
Do all switch arms have break statements? If not, is the ``fall through'' correct?

4. Input/Output (IO)
Are files opened before use?
Are files closed after use?
Are buffers flushed at correct times?
Are error conditions checked?

5. Other (OT)
Any defect discovered that does not fall into one of the above categories?

2016-05-23

11

21

Example: Inspection Record

22

Inspection Effectiveness Factors

* The effectiveness of inspection in finding defects that are present

http://www.sdm.de/download/sdm-konf2001/f_7_fagan.pdf

2016-05-23

12

23

Statistical SQA Steps

1. Information about software defects is collected and
categorized

2. An attempt is made to trace each defect to its underlying
cause
– e.g.; non-conformance to specification, design error, violation of

standards, poor communication with the customer, etc.

3. Using the Pareto principle
– 80% of the defects can be traced to 20% of all the possible causes

(“vital few”)

4. Once the vital few causes have been identified, move to
correct the problems that have caused the defects

24

Reliability & Availability

• Reliability – “the probability of failure-free operation of
computer program in a specified environment for a specified
time”

– MTBF = MTTF + MTTR

• Availability – “ the probability that a program is operating
according to requirements as a given point in time”
– Availability = [MTTF/(MTTF + MTTR)] * 100%

= (MTTF/Reliability) * 100%

MTBF: Mean Time Between Failure

MTTF: Mean Time To Failure

MTTR: Mean Time To Repair

2016-05-23

13

25

Classification of SRMs

Issues Prediction Estimation

Data Reference - Uses historical project
data

- Uses observed data from
the current project

When to Use in SDLC - Usually made prior to
development or test phase

- Usually made later in life
cycle

Time Frame - Predict reliability at some
future time

- Estimate reliability at
either present or some
future time

Software Development Life Cycle

Req. Design Code Test Operation

Early Reliability Prediction
Late Reliability Estimation

Project characteristics
(Process, Product,

Platform…)

Faults/Failure Data Collection

26

Software Safety

“A SQA activity that focus on the identification and assessment of potential
hazards that may affect software negatively and cause an entire system to

fail”

• Example: hazards associated w/ a cruise control for an automobile
– Causes uncontrolled acceleration that cannot be stopped

– Does not respond to depression of brake pedal

– Does not engage when switch is activated

– Slowly loses or gains speed

• Software Reliability vs. Safety
– Closely Related to on another

– Software Reliability uses statistical analysis to determine the likelihood that a software
failure will occur

– Software Safety examine the ways in which failures result in conditions that can lead to a
mishap

2016-05-23

14

27

Quality Related Standards

• ISO/IEC 25012:2008 - Software engineering -- Software
product Quality Requirements and Evaluation (SQuaRE) -
- Data quality model

• ISO 9001:2008 - Quality management systems –
Requirements

• IEEE Std 730-1998 - IEEE Standard for Software Quality
Assurance Plans

• IEEE 1633™-2008 - IEEE Recommended Practice on
Software Reliability

• IEC 61508 - Functional safety of
electrical/electronic/programmable electronic safety-
related systems

• …….

28

Q & A

