
소프트웨어 공학 원리
(SEP521)

Jongmoon Baik

Software Development Process

2

Software Development Processes
(Lifecycle Models)

3

What is a S/W Life Cycle?

• “The series of stages in form and functional activity through which an

organism passes between successive recurrence of a specified primary

stage” – Webster (1982)

• “Period of time that begins when a software product is conceived and ends

when the product is retired from use” – Don Reifer (1997)

Development
Stage

Ideally using
S/W

development
process model
(methodology)

Operation &
Maintenance

Ideally using
chosen

technologies

Obsolescence

Conversion

4

What is Software Process?

Software process – a set of activities, methods, best

practices, deliverables, and automated tools that

stakeholders use to develop and continuously improve

software.

– Using a consistent process for software development:

–Create efficiencies that allow management to shift
resources between projects

–Produces consistent documentation that reduces
lifetime costs to maintain the systems

–Promotes quality

5

What is S/W Process (Life Cycle) Model?

• Software Process Model
– An abstract representation of a process

• A description of a process from some particular perspective

– Attempt to generalize the s/w development process
into steps with associated activities and/or artifacts

• Proliferation of S/W Process Models
– Provides flexibility for organizations to deal with

the wide variety of software project situations,
cultures, and environments

– Weakens the defenses against some common
sources of project failure

6

Process = Lifecycle

• Software process is not the same as life cycle

models.
– process refers to the specific steps used in a specific organization to

build systems

– indicates the specific activities that must be undertaken and artifacts

that must be produced

– process definitions include more detail than provided lifecycle models

• Software processes are sometimes defined in

the context of a lifecycle model.

7

Generic S/W Process Models

• Build-And Fix Model

• Waterfall Model
– Process phases are distinct and separate

• Evolutionary Development
– Process phases are interleaved

• Formal Systems Development
– A mathematical system model is formally transformed to an

implementation

• Component-Based Development
– The system is assembled from existing components

8

Need to look at with respect

to:
• Scope, time, resources, quality

• Stakeholders

• Environments

– Business / Market

– Cultures

• Moral, legal constraints

9

So, when looking at projects

Need to ask:

“What SDLC would fit my project

best?”

(Is this better than what type of project would fit

each SDLC?)

10

Build-And-Fix Model

• The worst (Ad Hoc) model for a software project
– Become a mess, chuck it, start over

• No proper specifications and design steps

• Discouraged from using this model

Build First Version

Modify until client
is satisfied

Maintenance

11

Waterfall Model

• Formal “Sign-off” at the end of each phase
– Documentation as product of each phase – Document-driven approach

• Referred to as the linear sequential model or the software life cycle

12

Waterfall Model:

Advantages
• Clear progress state

– Good for project Management

– Engineers know their tasks

• Development is (relatively) slow and

deliberate

– Results in solid, well-constructed systems

– All sub-goals within each phase must be met

– Testing is inherent to every phase

13

Waterfall Model :

Drawbacks
• Difficult (Expensive) to accommodate change

after process is underway
– One phase has to be complete before moving to the next phase

• Inflexible partitioning of the project into

distinct stages
– Difficult to respond to changing customer requirements

– Few business systems have stable requirements

14

Applicability of Waterfall

Model
• Therefore, Waterfall model is only appropriate

when the requirements are well-understood

and changes will be fairly limited during the

design process

• Mostly used for large software system projects

where a system is developed at several sites

15

Evolutionary Development -

I

16

Evolutionary Development -

II
• Basic Idea

– Build prototype version of system, seek use comments, and keep

refining until done

• Other side of formality spectrum from

Waterfall Model

17

Two Flavors of Evolutionary Dev.

• Exploratory development:

– Objective is to work with customers and to evolve
a final system from an initial outline specification
(prototype)

– Should start with well-understood requirement and
add new features as proposed by the customer

• Throw-prototyping

– Objective is to understand the system requirements

– Should start with poorly understood requirements
to clarify what is really needed

18

Evolutionary Development: Advantages

• Faster system development than with waterfall model

• Useful when requirements are less-well understood

• Customer inputs throughout development yields system closer

to their needs

• Steady visible signs of progress

19

Evolutionary Dev.: Drawbacks

• Lack of process visibility
– Not known how long it will take to create an acceptable product

– Not known how many iteration will be necessary

• Systems are often poorly structured
– Continuous reflection of customer needs

• Special skills (e.g. in languages for rapid

prototyping) may be required.

20

Applicability of Evolutionary Dev.

• For small or medium-size interactive systems

• For parts of large systems (e.g. the user

interface)

• For short-lifetime systems

21

Formal Systems

Development - I
• Based on the transformation of a mathematical specification through

different representations to an executable program

• Transformations are ‘correctness-preserving’ so it is straightforward to

show that the program conforms to its specification

• Embodied in the ‘Cleanroom’ approach to software development

• Each transformation should be sufficiently close to avoid excessive

verification efforts and reduce the possibility of transformation errors

22

Formal Systems Development - II

Requirements
definition

Formal
specification

Formal
transformation

Integration and
system testing

R2
Formal

specification
R3

Executable
program

P2 P3 P4

T1 T2 T3 T4

Proofs of transformation correctness

Formal transformations

R1

P1

23

Formal Systems Dev.: Advantages

• Transformations are small, making verification

tractable

• Resulting implementations are proven to meet

specifications, so testing (of components) is

unnecessary
– Although, overall system characteristics (e.g. performance, reliability)

still need verification

24

Formal Systems Dev.: Drawbacks

• Need for specialised skills and training
– Expertise for the mathematical notations used for formal specifications

• Development time high (usually not worth the

time/cost)
– No significant quality or cost advantages over other approaches

• Difficult to formally specify some aspects of
the system, e.g. user interfaces

24

25

Applicability of Formal Systems Dev.

• Critical systems

– Systems that require strict safety, reliability, and

security requirements

• Critical components within large systems

26

Component-Based

Development - I
• Based on systematic reuse where systems are integrated from

existing components or COTS (Commercial-off-the-shelf)

systems

• Process stages

– Component analysis

– Requirements modification

– System design with reuse

– Development and integration

• This approach is becoming more important but still limited

experience with it

27

Component-Based Development - II

Requirements
specification

Component
analysis

Development
and integration

System design
with reuse

Requirements
modification

System
validation

28

Process iteration

• System requirements ALWAYS evolve in the course of a

project so process iteration where earlier stages are reworked

is always part of the process for large systems.

• Iteration can be applied to any of the generic process models.

• Two (related) approaches

– Incremental Model;

– Spiral Model

29

Incremental Model

• Rather than deliver the system as a single delivery, the development and

delivery is broken down into increments (Builds) with each increment

delivering part of the required functionality.

– Each increments provides more functionality than the previous increment

• User requirements are prioritized and the highest priority requirements

are included in early increments.

• Once the development of an increment is started, the requirements are

frozen though requirements for later increments can continue to evolve.

30

Incremental development

• Series of incremental builds until the product is finished

• Value assignment to each build not yet implemented

• Cost estimation of developing each build

• Value-to-Cost ratio is the criterion used for next build selection

Implement and test
first build

Implement, integrate and test
successive build until product

is complete

Maintenance

31

Incremental Model:

Advantages
• Customer value can be delivered with each increment so

system functionality is available earlier.

• Early increments act as a prototype to help elicit requirements

for later increments.

• Lower risk of overall project failure.

• The highest priority system services tend to receive the most

testing.

32

Spiral Model - I

• Represented as a spiral rather than as a sequence of activities
with backtracking.
– Combines the iterative nature of prototyping with the controlled and systematic

aspects of the waterfall model

• Provides the potential for rapid development of incremental
versions of software

• Each loop in the spiral represents a phase in the process.

• No fixed phases such as specification or design - loops in the
spiral are chosen depending on what is required.

• Risks are explicitly assessed and resolved throughout the
process.

[Boehm 1988]: “A Spiral Model of Software Development and Enhancement”

33

Spiral Model - II

34
34

Spiral Model Sectors - I

• Determine objectives, alternatives, &
constraints
– Specific objectives for the phase (performance, functionality, ability to

accommodate changes etc.)

– Alternative means of implementing this portion of the product (design
A, design B, reuse, buy, etc.)

– Constraints imposed on the application of the alternatives (cost,
schedule, interface, etc.)

• Evaluate Alternatives, Identify, resolve risks
– Evaluate alternatives relative to the objectives and constraints

– Identify areas of uncertainty that significant sources of project risk

– Formulate a cost effective strategy for resolving sources of risk
• Prototyping, simulation, benchmarking, reference checking, administering

user questionnaires, analytic modeling, or combinations of these and other
resolution techniques

35

Spiral Model Sectors - II

• Develop, Verify next-level product
– A development model for the system is chosen which can be any of the

generic models.

• Evolutionary model, waterfall model, incremental development,
combinations, etc.

• Plan Next Phases
– The project is reviewed and the next phase of the spiral is planned

• The review covers all products developed during the previous cycle, plans
for the next cycle, resource required

• Ensure that all concerned parties are mutually committed to the approach
for the next phase

36
36

Six Spiral Model Essentials

1. Concurrent determination of artifacts in each cycle

2. Each cycle addresses objectives, constraints, alternatives, risks,

artifact elaboration, stakeholders’ commitment

3. Risk-driven activity level of effort

4. Risk-driven artifact degree of detail

5. Managing stakeholder commitments via anchor-point

milestones

6. Emphasis on system and life-cycle issues

- vs. software and development issues

37

Spiral Model : Advantages

• The spiral model is a realistic approach to the development of large-scale
software products because the software evolves as the process progresses.
In addition, the developer and the client better understand and react to risks
at each evolutionary level.

• The model uses prototyping as a risk reduction mechanism and allows for
the development of prototypes at any stage of the evolutionary
development.

• It maintains a systematic stepwise approach, like the classic life cycle
model, but incorporates it into an iterative framework that more reflect the
real world.

• If employed correctly, this model should reduce risks before they become
problematic, as consideration of technical risks are considered at all stages.

38

IBM-UP Model - I

• A modern process model derived from the

work on the UML and associated process.

• Normally described from 3 perspectives
– A dynamic perspective that shows phases over time

– A static perspective that shows process activities

– A proactive perspective that suggests good practice

IBM-UP (Unified Process)

39

IBM-UP Model - II

40

Best practices of UP

• Develop software iteratively

• Manage requirements

• Use component based architecture

• Visually model software

• Verify software quality

• Control changes to software

41

Limitations of UP

• High Adopting UP is often thought to be

expensive.

• Does not cover any non-software aspects of

development
– e.g., system engineering. product-line engineering, safety engineering

• Considered too practical, as the practicality has

been based on current status of the IBM tool

suite

42

V Model - I

• Often used in system engineering

environments to represent the system

development lifecycle.
– summarizes the main steps taken to build systems not specifically

software

– describes appropriate deliverables corresponding with each step in the

model.

43

V Model - II

• The left side of the V: the specification stream where the system specifications

are defined.

• The right side of the V: the testing stream where the systems is being tested

against the specifications defined on the left side.

• The bottom of the V where the tails meet, represents the development stream.

44
44

Current State of the Art

• Iterative, cyclic development

• Agile Processes? – covered later

• Software is grown rather than birthed whole

• Short cycles, Small teams

• Component development (Reuse, COT, Product Line, etc)

• More integration vice new development (SoS)?

When looking at a new project,

DO NOT make your project fit a SDLC!!!

• INSTEAD, find the right SDLC and tailor it to your project (if it can be).

• Your organization may drive this
– But any lifecycle, process should be seen as a tool to assist development, not an end in and of it self.

45
45

Process Model Decision

46

These slides are designed to accompany Software Engineering: A Practitioner’s
Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

Process Assessment and Improvement

• Standard CMMI Assessment Method for Process Improvement (SCAMPI) —
provides a five step process assessment model that incorporates five phases:
initiating, diagnosing, establishing, acting and learning.

• CMM-Based Appraisal for Internal Process Improvement (CBA IPI)—
provides a diagnostic technique for assessing the relative maturity of a
software organization; uses the SEI CMM as the basis for the assessment
[Dun01]

• SPICE—The SPICE (ISO/IEC15504) standard defines a set of
requirements for software process assessment. The intent of the standard is
to assist organizations in developing an objective evaluation of the efficacy
of any defined software process. [ISO08]

• ISO 9001:2000 for Software—a generic standard that applies to any
organization that wants to improve the overall quality of the products,
systems, or services that it provides. Therefore, the standard is directly
applicable to software organizations and companies. [Ant06]

47

These slides are designed to accompany Software Engineering: A
Practitioner’s Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009
by Roger Pressman.

Personal Software Process (PSP)

• Planning. This activity isolates requirements and develops both size and resource
estimates. In addition, a defect estimate (the number of defects projected for the
work) is made. All metrics are recorded on worksheets or templates. Finally,
development tasks are identified and a project schedule is created.

• High-level design. External specifications for each component to be constructed are
developed and a component design is created. Prototypes are built when uncertainty
exists. All issues are recorded and tracked.

• High-level design review. Formal verification methods (Chapter 21) are applied to
uncover errors in the design. Metrics are maintained for all important tasks and work
results.

• Development. The component level design is refined and reviewed. Code is
generated, reviewed, compiled, and tested. Metrics are maintained for all important
tasks and work results.

• Postmortem. Using the measures and metrics collected (this is a substantial
amount of data that should be analyzed statistically), the effectiveness of the process
is determined. Measures and metrics should provide guidance for modifying the
process to improve its effectiveness.

48

These slides are designed to accompany Software Engineering:
A Practitioner’s Approach, 7/e (McGraw-Hill, 2009). Slides
copyright 2009 by Roger Pressman.

Team Software Process (TSP)

• Build self-directed teams that plan and track their work, establish
goals, and own their processes and plans. These can be pure
software teams or integrated product teams (IPT) of three to about
20 engineers.

• Show managers how to coach and motivate their teams and how to
help them sustain peak performance.

• Accelerate software process improvement by making CMM Level 5
behavior normal and expected.

– The Capability Maturity Model (CMM), a measure of the effectiveness of a
software process, is discussed in Chapter 30.

• Provide improvement guidance to high-maturity organizations.

• Facilitate university teaching of industrial-grade team skills.

49
49

Standard Processes

• IEEE and ISO Software Engineering Standards
– http://standards.ieee.org/catalog/olis/se.html

– 1074-1997IEEE Standard for Developing Software Life Cycle Processes

– 1517-1999 (R2004)IEEE Standard for Information Technology - Software Life
Cycle Processes - Reuse Processes

– 12207.0-1996IEEE/EIA Standard: Industry Implementation of International
Standard ISO/IEC 12207:1995 Standard for Information Technology--Software
Life Cycle Processes.

– 15288-2004IEEE Std 15288-2004 (Adoption of ISO/IEC 15288:2002, IDT),
Systems Engineering---System Life Cycle Processes

– ………

http://standards.ieee.org/catalog/olis/se.html
http://standards.ieee.org/reading/ieee/std/se/1074-1997.pdf
http://standards.ieee.org/reading/ieee/std/se/1517-1999.pdf
http://standards.ieee.org/reading/ieee/std/se/12207.0-1996.pdf
http://standards.ieee.org/reading/ieee/std/se/15288-2004.pdf

50

Q & A

