
Software Engineering Economics
(CS656)

Jongmoon Baik

Software Cost Estimation w/ COCOMO II

2

Software Cost Estimation

3

“You can not control

what you can not see”

- Tom Demarco -

4

Why Estimate Software?

• 30% of project never complete

• 100-200% cost overruns not uncommon

• Average project exceeds cost by 90%; Schedule

by 120%

• 15% of large project never deliver anything

• Only 16.2% of projects are successful

* 1998, 1999, 2000 Standish report, Choas

5

When to Estimate?

• Estimation during the Bid

– Short duration, fastest possible, least
understanding

• Estimation at project Start

– Creating full plan, allocating resources, detailed
estimation

• Estimation during the project

– How do you handle change

6

Why are we bad at estimating?

• Complexity of the systems

– Infrequency - How often do we do the “same

thing”

• vs. manufacturing or construction

– Underestimation bias

• Computers are “easy”; software is “easy”

– We deal with Goals not estimates

• Must be done by June

– Complexity is what makes estimating hard

7

Why are we bad at estimating?

(2)
• Complexity of the systems

– ~1000 FP in a pace maker (50K)

– ~18,800 FP in shuttle test scaffolding (1,000,000

LOC)

– ~75,400 FP in Nynex Switch (4,000,000LOC)

• “Human brain capacity is more or less fixed,

but software complexity grows at least as fast

as the square of the size of the project” Tony

Bowden

8

Determining “Development effort”

• Development effort measures

– Person-Month

– LOC per Hour

– Function point per hour

– Requirement per hour

• Most common is person-months (or hours)

• We will look at ways to get development

effort

9

Why Is It Important??

• Software cost is big and growing

• Many useful software products are not
getting developed

• Get us better software not just more software

Boehm et. Al, “Understanding and Controlling Software Cost”, IEEE TSE,
SE4, 10, pp1462-77

10

Software Estimation Techniques

Software Estimation Techniques

11

Software Cost Estimation Steps

1. Establish Objectives
– Rough Sizing

– Make-or-Buy

– Detailed Planning

2. Allocate Enough Time, Dollars, Talent

3. Pin down Software Requirements
– Documents Definition, Assumption

4. Work out as much detail as Objectives permit

5. Use several independent Techniques + Sources
– Top-Down vs. Bottom-Up

– Algorithm Vs. Expert-Judgement

6. Compare and iterate estimates
– Pin down and resolve inconsistencies

– Be Conservative

7. Follow up

12

WHO SANG COCOMO?

• The Beach Boys [1988]

• “KoKoMo” Aruba, Jamaica,ooo I wanna take you
To Bermuda, Bahama,come on, pretty
mama
Key Largo, Montego, baby why don't we
go jamaica
Off the Florida Keys there's a place
called Kokomo
That's where you want to go to get
away from it all
Bodies in the sand
Tropical drink melting in your hand
We'll be falling in love to the rhythm of
a steel drum band
Down in Kokomo
……………………..
………………………..

13

Who are COCOMO?

A tribe in Kenya

KBS2 – “an exploration party to challenge the globe”
Sep. 4, 2005

14

What is COCOMO?

“COCOMO (COnstructive COst

MOdel) is a model designed by

Barry Boehm to give an estimate

of the number of programmer-

months it will take to develop a

software product.”

http://en.wikipedia.org/wiki/Barry_Boehm
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Computer_software

15

COCOMO II Overview - I

Software product size estimate

Software product, process,
computer, and personnel attributes

Software reuse, maintenance,
and increment parameters

Software organization’s
project data

Software development,
maintenance cost and
schedule estimates

Cost, schedule distribution
by phase, activity,
increment

COCOMO recalibrated
to organization’s
data

COCOMO II

16

COCOMO II Overview - II

• Open interfaces and internals
– Published in Software Cost Estimation with COCOMO II, Boehm et.

al., 2000

• COCOMO – Software Engineering Economics , Boehm, 1981

• Numerous Implementation, Calibrations,
Extensions
– Incremental Development, Ada, new environment technology

– Arguably the most frequently-used software cost model worldwide

17

List of COCOMO II

Packages
• USC COCOMO II.2000 - USC

• Costar – Softstar Systems

• ESTIMATE PROFESSIONAL – SPC

• CostXpert – Marotz

• Partial List of COCOMO Packages (STSC,

1993)

– CB COCOMO, GECOMO Plus, COCOMOID,

GHL COCOMO, COCOMO1, REVIC, CoCoPro,

SECOMO, COSTAR, SWAN, COSTMODL

18

COCOMO II User Objectives

• Making investment or other financial decisions involving a software

development

• Setting project budgets and schedules as a basis for planning and control

• Deciding on or negotiating tradeoffs among software cost, schedule,

functionality, performance or quality factors

• Making software cost and schedule risk management decisions

• Deciding which parts of a software system to develop, reuse, lease or purchase

• Making legacy software inventory decisions: what parts to modify, phase out,

outsource, etc.

• Setting mixed investment strategies to improve your organization’s software

capability, via reuse, tools, process maturity, outsourcing, etc.

• Deciding how to implement a process improvement strategy

19

COCOMO II Objectives

• Provide accurate cost and schedule estimates for both current and likely

future software projects.

• Enabling organizations to easily recalibrate, tailor or extend COCOMO II

to better fit their unique situations.

• Provide careful, easy-to-understand definition of the model’s inputs,

outputs and assumptions.

• Provide constructive model.

• Provide a normative model.

• Provide evolving model.

20

COCOMO II Evolution

Strategies - I
• Proceed incrementally

– Estimation issues of most importance and tractability w.r.t modeling, data
collection, and calibration.

• Test the models and their concepts on first-hand experience
– Use COCOMO II in annual series of USC Digital Library projects

• Establish a COCOMO II Affiliates’ program
– Enabling us to draw on the prioritized needs, expertise, and calibration data of

leading software organizations

21

COCOMO II Evolution

Strategies - II
• Provide an externally and internally open model.

• Avoid unnecessary incompatibilities with COCOMO 81.

• Experiment with a number of model extensions.

• Balanced expert- and data- determined modeling.

• Develop a sequence of increasingly accurate models.

• Key the COCOMO II models to projections of future software
life cycle practices.

22

S/W Estimation Accuracy vs. Phase

Plans

and

Rqts.

Devel.

and

Test
Phases and Milestones

Size (DSI)

+ Cost ($)

+

+

+
+
+
+

+

+

+
+

+
+
+

4x

2x

1.5x

1.25x

x

0.25x

0.5x

Relative

Size

Range

Completed
Programs

USAF/ESD
Proposals

Feasibility Product

Design

Detail

Design

Concept of

Operation

Rqts.

Spec.

Product

Design

Spec.

Detail

Design

Spec.

Accepted

Software

“Corn of Software Cost Estimation”

23

MBASE/Rational Anchor Point Milestones

App.

Compos.
Inception Elaboration, Construction

LCO,

LCA

IOC

Waterfall

Rqts. Prod. Des.

LCA

Development

LCO

Sys

Devel

IOC

Transition

SRR PDR

Construction

SAT

Trans.
Inception

Phase
Elaboration

24

Application Composition

Model
• Challenge:

– Modeling rapid application composition with

graphical user interface (GUI) builders, client-

server support, object-libraries, etc.

• Responses:

– Application-Point Sizing and Costing Model

– Reporting estimate ranges rather than point

estimate

25

Application Point Estimation Procedure

Element Type Complexity-Weight
Simple Medium Difficult

Screen 1 2 3
Report 2 5 8
3GL Component 10

Step 1: Assess Element-Counts: estimate the number of screens, reports, and 3GL components that will comprise this

application. Assume the standard definitions of these elements in your ICASE environment.

Step 2: Classify each element instance into simple, medium and difficult complexity levels depending on values of

characteristic dimensions. Use the following scheme:

For Screens For Reports

and source of data tables # and source of data tables

Number of

Views

Contained

Total < 4

(<2 srvr, <3

clnt)

Total <8

(<3 srvr, 3 -

5 clnt)

Total 8+

(>3 srvr, >5

clnt)

Number

of Sections

Contained

Total < 4

(<2 srvr, <3

clnt)

Total <8

(<3 srvr, 3 -

5 clnt)

Total 8+

(>3 srvr, >5

clnt)

<3 simple simple medium 0 or 1 simple simple medium

3-7 simple medium difficult 2 or 3 simple medium difficult

>8 medium difficult difficult 4+ medium difficult difficult

Step 3: Weigh the number in each cell using the following scheme. The weights reflect the relative effort required to

implement an instance of that complexity level.

Step 4: Determine Application-Points: add all the weighted element instances to get one number, the Application-Point count.

Step 5: Estimate percentage of reuse you expect to be achieved in this project. Compute the New Application Points to be

developed NAP =(Application-Points) (100-%reuse) / 100.

Step 6: Determine a productivity rate, PROD=NAP/person-month, from the following scheme:

Developer's experience and capability Very Low Low Nominal High Very High

ICASE maturity and capability Very Low Low Nominal High Very High

PROD 4 7 13 25 50

Step 7: Compute the estimated person-months: PM=NAP/PROD.

26

Sizing Methods

• Source Lines of Code (SLOC)

– SEI Definition Check List

• Unadjusted Function Points (UFP)

– IFPUG

27

Source Lines of Code

• Best Source : Historical data form previous projects

• Expert-Judged Lines of Code

• Expressed in thousands of source lines of code

(KSLOC)

• Difficult Definition – Different Languages

• COCOMO II uses Logical Source Statement
– SEI Source Lines of Code Check List

– Excludes COTS, GFS, other products, language support libraries and

operating systems, or other commercial libraries

28

SEI Source Lines of Code

Checklist

29

Unadjusted Function Points

- I
• Based on the amount of functionality in a

software project and a set of individual project
factors.

• Useful since they are based on information that
is available early in the project life-cycle.

• Measure a software project by quantifying the
information processing functionality
associated with major external data or control
input, output, or file types.

30

Unadjusted Function Points

- II
Step 1. Determine function counts by type. The unadjusted function point counts should be counted by a lead technical person based on

information in the software requirements and design documents. The number of each the five user function types should be counted

(Internal Logical File (ILF), External Interface File (EIF), External Input (EI), External Output (EO), and External Inquiry (EQ)).

Step 2. Determine complexity-level function counts. Classify each function count into Low, Average, and High complexity levels

depending on the number of data element types contained and the number of file types reference. Use the following scheme.

For ILF and EIF For EO and EQ For EI

Data Elements Data Elements Data Elements Record
Elements 1-19 20-50 51+

File Types

1-5 6-19 20+

File Types

1-4 5-15 16+

1 Low Low Avg 0 or 1 Low Low Avg 0 or 1 Low Low Avg

2-5 Low Avg High 2-3 Low Avg High 2-3 Low Avg High

6+ Avg High High 4+ Avg High High 4+ Avg High High

Step 3. Apply complexity weights. Weight the number in each cell using the following scheme. The weight reflect the relative value of

the function to the user.

Complexity Weight Function Type

Low Average High

Internal Logical File (ILF) 7 10 15

External Interface Files (EIF) 5 7 10

External Inputs (EI) 3 4 6

External Outputs 4 5 7

External Inquiries 3 4 6

Step 4. Compute Unadjusted Function Points. Add all the weight functions counts to get one number, the Unadjusted Function Points.

31

Relating UFPs to SLOC

• USC-COCOMO II
– Use conversion table (Backfiring) to convert UFPS into

equivalent SLOC

– Support 41 implementation languages and USR1-5 for
accommodation of user’s additional implementation languages

– Additional Ratios and Updates :
http://www.spr.com/library/0Langtbl.htm

Language SLOC/UFP Language SLOC/UFP

Access 38
Ada 83 71
Ada 95 49

.

.

.

.

.

.

.

Jovial 107
Lisp 64
Machine Code 640

.

.
USR_1 1
USR_2 1

.

.

.

32

Exercise - I

• Suppose you are developing a stand-alone

application composed of 2 modules for a client

– Module 1 written in C

• FP multiplier C 128

– Module 2 written in C++

• FP multiplier C++ 53

• Determine UFP’s and equivalent SLOC

33

Information on Two

Modules

Complexity Weight Function Type

Low Average High

Internal Logical File (ILF) 2 0 0

External Interface Files (EIF) 0 5 0

External Inputs (EI) 0 4 0

External Outputs 0 2 0

External Inquiries 0 0 10

Complexity Weight Function Type

Low Average High

Internal Logical File (ILF) 0 1 0

External Interface Files (EIF) 2 0 0

External Inputs (EI) 0 0 3

External Outputs 0 1 0

External Inquiries 0 0 2

Module 1

Module 2

FP default weight values

34

Early Design & Post-Architecture Models

• Early Design Model [6 EMs]:

• Post Architecture Model [16 EMs]:
*Exclude SCED driver

EMs: Effort multipliers to reflect characteristics of particular
software under development

A : Multiplicative calibration variable
E : Captures relative (Economies/Diseconomies of scale)
SF: Scale Factors

A = 2.94 B = 0.91

C = 3.67 D = 0.28

35

Scale Factors & Cost Drivers

• Project Level – 5 Scale Factors

– Used for both ED & PA models

• Early Design – 7 Cost Drivers

• Post Architecture – 17 Cost Drivers

– Product, Platform, Personnel, Project

36

Project Scale Factors - I

• Relative economies or diseconomies of scale
– E < 1.0 : economies of scale

• Productivity increase as the project size increase

• Achieved via project specific tools (e.g., simulation, testbed)

– E = 1.0 : balance

• Linear model : often used for cost estimation of small projects

– E > 1.0 : diseconomies of scale

• Main factors : growth of interpersonal communication overhead and growth of
large-system overhead

37

Project Scale Factors - II

Scale Factors
(SFi)

Very Low

Low

Nominal

High

Very High

Extra High

thoroughly

unprecedente

d

largely

unprecedente

d

somewhat

unprecedente

d

generally

familiar

largely

familiar

throughly

familiar

PREC

6.20 4.96 3.72 2.48 1.24 0.00

rigorous

occasional

relaxation

some

relaxation

general

conformity

some

conformity

general goals FLEX

5.07 4.05 3.04 2.03 1.01 0.00

little (20%) some (40%) often (60%) generally(75

%)

mostly (90%) full (100%) RESL

7.07 5.65 4.24 2.83 1.41 0.00

very difficult

interactions

some difficult

interactions

basically

cooperative

interactions

largely

cooperative

highly

cooperative

seamless

interactions

TEAM

5.48 4.28 3.29 2.19 1.10 0.00

SW-CMM

Level 1

Lower

SW-CMM

Level 1

Upper

SW-CMM

Level 2

SW-CMM

Level 3

SW-CMM

Level 3

SW-CMM

Level 5

PMAT

 Or the Estimated Process Maturity Level (EPML)

 7.80 6.24 4.68 3.12 1.56 0.00

38

PMAT == EPML

• EPML (Equivalent Process Maturity Level)

39

PA Model – Product EMs

Effort
Multiplier

Very Low

Low

Nominal

High

Very High

Extra High

slight inconven-

ience

low, easily

recoverable

losses

moderate, easily

recoverable

losses

high financial

loss

risk to human

life

 RELY

0.82 0.92 1.00 1.10 1.26 n/a

 DB bytes/Pgm

SLOC < 10

10 <= D/P < 100 100 <= D/P <

1000

D/P>=1000 DATA

n/a 0.90 1.00 1.14 1.28 n/a

 none across project across program across product

line

across multiple

product lines
RUSE

n/a 0.95 1.00 1.07 1.15 1.24

Many life-cycle

needs uncovered

Some life-cycle

needs

uncovered.

Right-sized to

life-cycle needs

Excessive for

life-cycle needs

Very excessive

for life-cycle

needs

 DOCU

0.81 0.91 1.00 1.11 1.23 n/a

CPLX See CPLX table

 0.73 0.87 1.00 1.17 1.34 1.74

40

PA Model - CPLX

Effort
Multiplier

Control Operations Computational

Operations
Device-dependent

Operations
Data Management

Operations
User Interface

Management

Operations
Very Low Straight-line code with

a few non-nested
structured

programming
operators: DOs,

CASEs, IF-THEN-
ELSEs. Simple

module composition via
procedure calls or

simple scripts.

Evaluation of simple
expressions: e.g.,

A=B+C*(D-E)

Simple read, write
statements with simple

formats.

Simple arrays in main
memory. Simple
COTS-DB queries,

updates.

Simple input forms,
report generators.

Low

… … … … …

Nominal

Mostly simple nesting.

Some intermodule

control. Decision

tables. Simple

callbacks or message

passing, including

middleware-supported

distributed processing

Use of standard math and

statistical routines.

Basic matrix/vector

operations.

I/O processing includes

device selection, status

checking and error

processing.

Multi-file input and

single file output.

Simple structural

changes, simple edits.

Complex COTS-DB

queries, updates.

Simple use of widget set.

High … … … … …

Very High … … … … …

Extra High Multiple resource
scheduling with
dynamically changing
priorities. Microcode-
level control.
Distributed hard real-
time control.

Difficult and
unstructured numerical
analysis: highly
accurate analysis of
noisy, stochastic data.
Complex
parallelization.

Device timing-
dependent coding,
micro-programmed
operations.
Performance-critical
embedded systems.

Highly coupled,
dynamic relational and
object structures.
Natural language data
management.

Complex multimedia,
virtual reality, natural
language interface.

41

PA Model – Platform EMs

Effort
Multiplier

Very Low

Low

Nominal

High

Very High

Extra High

 50% use of

available

execution time

70% use of

available

execution time

85% use of

available

execution time

95% use of

available

execution time

TIME

n/a n/a 1.00 1.11 1.29 1.63

 50% use of

available storage

70% use of

available storage

85% use of

available storage

95% use of

available storage
STOR

n/a n/a 1.00 1.05 1.17 1.46

 Major change

every 12 mo.;

Minor change

every 1 mo.

Major: 6 mo.;

Minor: 2 wk.

Major: 2

mo.;Minor: 1

wk.

Major: 2

wk.;Minor: 2

days

 PVOL

n/a 0.87 1.00 1.15 1.30 n/a

42

PA Model – Personnel EMs

Effort
Multiplier

Very Low

Low

Nominal

High

Very High

Extra High

15th percentile 35th percentile 55th percentile 75th percentile 90th percentile ACAP

 1.42 1.19 1.00 0.85 0.71 n/a

15th percentile 35th percentile 55th percentile 75th percentile 90th percentile PCAP

 1.34 1.15 1.00 0.88 0.76 n/a

48% / year 24% / year 12% / year 6% / year 3% / year PCON
1.29 1.12 1.00 0.90 0.81 n/a

<= 2 months 6 months 1 year 3 years 6 years APEX

 1.22 1.10 1.00 0.88 0.81 n/a

<= 2 months 6 months 1 year 3 years 6 year LTEX

 1.20 1.09 1.00 0.91 0.84 n/a

PLEX <= 2 months 6 months 1 year 3 years 6 year

 1.19 1.09 1.00 0.91 0.85 n/a

43

PA Model – Project EMs

Effort
Multiplier

Very Low

Low

Nominal

High

Very High

Extra High

edit, code, debug simple, frontend,

backend CASE,

little integration

basic life-cycle

tools,

moderately

integrated

strong, mature

life-cycle tools,

moderately

integrated

strong, mature,

proactive life-

cycle tools, well

integrated with

processes,

methods, reuse

 TOOL

1.17 1.09 1.00 0.90 0.78 n/a

Inter-national Multi-city and

Multi-company

Multi-city or

Multi-company

Same city or

metro. area

Same building

or complex

Fully collocated

Some phone,

mail

Individual

phone, FAX

Narrow band

email

Wideband

electronic

communication.

Wideband elect.

comm.,

occasional video

conf.

Interactive

multimedia

SITE

1.22 1.09 1.00 0.93 0.86 0.80

75%

of nominal

85%

of nominal

100%

of nominal

130%

of nominal

160%

of nominal

 SCED

1.43 1.14 1.00 1.00 1.00 n/a

44

ED EMs vs. PA EMs

Early Design Cost

Driver

Counterpart Combined

Post-Architecture Cost Drivers

RCPX RELY, DATA, CPLX, DOCU

RUSE RUSE (Same as P-A RUSE)

PDIF TIME, STOR, PVOL

PERS ACAP, PCAP, PCON

PREX APEX, PLEX, LTEX

FCIL TOOL, SITE

SCED SCED (Same as P-A SCED)

45

ED Model EMs - RCPX

RCPX
Descriptors:

Extra Low Very Low Low Nominal

High

Very High

Extra High

Sum of RELY,

DATA, CPLX,

DOCU Ratings

5, 6 7, 8 9 - 11 12 13 - 15 16 - 18 19 - 21

Emphasis on

reliability,

documentation

Very Little Little Some Basic Strong Very Strong Extreme

Product

complexity

Very simple Simple Some Moderate Complex Very complex Extremely

complex

Database size Small Small Small Moderate Large Very Large Very Large

Effort
Multiplier

0.49 0.60 0.83 1.00 1.33 1.91 2.72

46

ED Model EMs - PDIF

PDIF
Descriptors:

Extra Low Very Low Low Nominal

High

Very High

Extra High

Sum of TIME,

STOR, and

PVOL ratings

8 9 10 - 12 13 - 15 16, 17 Sum of

TIME, STOR,

and PVOL

ratings

8

Time and

storage

constraint

<=50% <= 50% 65% 80% 90% Time and

storage

constraint

? 50%

Platform

volatility

Very stable Stable Somewhat

volatile

Volatile Highly

volatile

Platform

volatility

Very stable

Effort
Multiplier

0.87 1.00 1.29 1.81 2.61 0.87 1.00

47

ED Model EMs - PERS

PERS
Descriptors:

Extra Low Very Low Low Nominal

High

Very High

Extra High

Sum of ACAP,

PCAP, PCON

Ratings

3, 4 5, 6 7, 8 9 10, 11 12, 13 14, 15

Combined

ACAP and

PCAP

Percentile

20% 35% 45% 55% 65% 75% 85%

Annual

Personnel

Turnover

45% 30% 20% 12% 9% 6% 4%

Effort
Multiplier

2.12 1.62 1.26 1.00 0.83 0.63 0.50

48

ED Model EMs - PREX

PREX
Descriptors:

Extra Low Very Low Low Nominal

High

Very High

Extra High

Sum of APEX,

PLEX, and

LTEX ratings

3, 4 5, 6 7, 8 9 10, 11 12, 13 14, 15

Applications,

Platform,

Language and

Tool Experience

<= 3 mo. 5 months 9 months 1 year 2 years 4 years 6 years

Effort Multiplier

1.59 1.33 1.22 1.00 0.87 0.74 0.62

49

ED Model EMs - FCIL

FCIL
Descriptors:

Extra Low Very Low Low Nominal

High

Very High

Extra High

Sum of TOOL

and SITE

ratings

2

3

4, 5

6

7, 8

9, 10

11

TOOL support Minimal Some Simple CASE

tool collection

Basic life-

cycle tools

Good;

moderately

integrated

Strong;

moderately

integrated

Strong; well

integrated

Multisite

conditions

Weak support

of complex

multisite

development

Some support

of complex

M/S devel.

Some support

of moderately

complex M/S

devel.

Basic support

of moderately

complex M/S

devel.

Strong

support of

moderately

complex M/S

devel.

Strong

support of

simple M/S

devel.

Very strong

support of

collocated or

simple M/S

devel.

Effort
Multiplier

1.43 1.30 1.10 1.0 0.87 0.73 0.62

50

Calibration & Prediction Accuracy

COCOMO 81 COCOMO II.1997 COCOMO II.2000

Project Data Points 63 83 161

Calibration 10% Data,

90% Expert

Bayesian

COCOMO 81 COCOMO II.1997 COCOMO II.2000

Effort
- By Organization

81% 52%

64%

75%

80%

Schedule
- By Organization

65% 61%

62%

72%

81%

MRE: PRED (.30) Values

COCOMO Calibration

51

COCOMO II Family

No. of Drivers Model

Environment Process

Sizing

Application

Composition

2 0

Application Points

Early Design 7 5 Function Points or SLOC

Post Architecture 17 5 Function Points or SLOC

COCOMO81

15 1 SLOC (FP Extension)

52

COCOMO Model

Comparison

53

USC-COCOMO II.2000

Demo.

54

Reuse & Product Line

Mgmt.
• Challenges

- Estimate costs of both reusing software and developing software for future

reuse

- Estimate extra effects on schedule (if any)

• Responses

- New nonlinear reuse model for effective size

- Cost of developing reusable software estimated by RUSE effort multiplier

- Gathering schedule data

55

Non-Linear Reuse Effect

100

1.0

1.5

0.0
50

0.5

Relative Modification of Size (AAF)

R
el

at
iv

e
C

os
t

[Selby 1988]

AAM

0.045

AAM Worst Case:

 AA = 8
 SU = 50
 UNFM = 1

 AAF = 0.5

AAM Best Case:

 AA = 0
 SU = 10
 UNFM = 0

 AAF = 0.5
Selby data

summary

56

Primary Cost Factors for Reuse (NASA)

• Cost of Understanding
– 47% of the effort in SW maintenance involves understanding the SW to

be modified [Parikh-Zvegintzov 1983]

• Relative cost of Checking Module
Interfaces
– Relation b/w no. of modified modules and no. of module interface

checking [Gerlich-Denskat 1994]

For m = 10

0

10

20

30

40

50

0 2 4 6 8 10

k

N

N: number of module interface checks required

m: number of modules for reuse

k: number of modules modified

57

COCOMO II Reuse Model

• Add Assessment & Assimilation increment
(AA)
– - Similar to conversion planning increment

• Add software understanding increment (SU)
– To cover nonlinear software understanding effects

– Coupled with software unfamiliarity level (UNFM)

– Apply only if reused software is modified

58

Software Understanding

SU

Very Low Low Nominal

High

Very High

Structure

Very low cohesion,

high coupling,

spaghetti code.

Moderately low

cohesion, high

coupling.

Reasonably well-

structured; some

weak areas.

High cohesion, low

coupling.

Strong modularity,

information hiding

in data / control

structures.

Application

Clarity

No match between

program and

application world-

views.

Some correlation

between program

and application.

Moderate

correlation between

program and

application.

Good correlation

between program

and application.

Clear match

between program

and application

world-views.

Self-Descriptive-
ness

Obscure code;

documentation

missing, obscure or

obsolete

Some code

commentary and

headers; some

useful

documentation.

Moderate level of

code commentary,

headers,

documentation.

Good code

commentary and

headers; useful

documentation;

some weak areas.

Self-descriptive

code;

documentation up-

to-date, well-

organized, with

design rationale.

SU Increment to
ESLOC

50

40

30

20

10

59

Assessment and Assimilation (AA)

AA Increment Level of AA Effort

0 None

2 Basic module search and documentation

4 Some module Test and Evaluation (T&E), documentation

6 Considerable module T&E, documentation

8 Extensive module T&E, documentation

60

Unfamiliarity (UNFM)

UNFM Increment Level of Unfamiliarity

0.0 Completely familiar

0.2 Mostly familiar

0.4 Somewhat familiar

0.6 Considerably familiar

0.8 Mostly unfamiliar

1.0 Completely unfamiliar

61

Guidelines for Quantifying Adapted

Software

Code
Category

DM

CM

IM

AA

SU

UNFM

New

- all original

software

not applicable

Adapted

- changes to

preexisting

software

0% - 100%

normally > 0%

0
+
% - 100%

usually > DM

and must be >

0%

0% - 100+%

IM usually

moderate and

can be > 100%

0% – 8%

0% - 50%

0 - 1

Reused

- unchanged

existing

software

0%

0%

0% - 100%

rarely 0%, but

could be very

small

0% – 8%

not applicable

COTS

- off-the-shelf

software (often

requires new

glue code as a

wrapper around

the COTS)

0%

0%

0% - 100%

0% – 8%

not applicable

62

Requirement Evolution & Volatility (REVL)

• Adjust the effective size of the product
– Causal factors: user interface evolution, technology upgrades, or COTS

volatility

• Percentage of code discarded due to
requirement evolution
– E.g., SLOC = 100K and REVL = 20

• Project effective size = 120K

63

Example: Manufacturing Control System

• Reused Code: 100 SLOC
• Full Cost: 2.94(100)1.10 (1.18) ($8K/PM) = $4400K
• International Factory Reuse: halfway between VH and

XH
• Recommended Reliability rating: 1 level lower
• Recommended Documentation rating: High
• Develop for Reuse: $4400 (1.195)(1.18)(1.11) =

$6824K

Effort Multipliers

Very Low Low Nominal

High

Very High

Extra High

Developed for Reuse .95 1.00 1.07 1.15 1.24

Required Reliability 0.82 0.92 1.00 1.10 1.26

Required Documentation

0.81 0.91 1.00 1.11 1.23

64

Subsequent Development w/ Reuse

– Black-box plug-and-play: 30 KSLOC

– Reuse with modifications: 30 KSLOC

– New factory-specific SW: 40 KSLOC

– Assessment and assimilation (AA): 2%

– Software understanding factor (SU): 10%

– Unfamiliarity factor (UNFM): 0.3

– % design modified (DM): 10%

– % code modified (CM): 20%

– % integration modified (IM): 20%

– AAF = .4(10) + .3 (20) + .3 (20) = .16

100

– ESLOC = 40 + (30) (.02) + (30) (.02 + (.3) (.1) + .16)

– = 40 + 0.6 + 6.3 = 46.9

– COST = 2.94 (46.9)1.10 (1.18) (1.195) (1.18) (1.1) ($8K) = $2966K

65

Reuse vs. Redevelopment

Number of Factories

Redevelopment Cost Product Line cost Investment Return

1 $4,400 $6,824 -$2,424

2 $8,800 $9,790 -$990

3 $13,200 $12,755 $444

4 $17,600 $15,722 $1,878

66

Q & A

