
1

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman.

Chapter 34

 Project Scheduling

Slide Set to accompany

Software Engineering: A Practitioner’s Approach, 8/e
by Roger S. Pressman and Bruce R. Maxim

Slides copyright © 1996, 2001, 2005, 2009, 2014 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction

with Software Engineering: A Practitioner's Approach, 8/e. Any other reproduction or use is

prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student

use.

2

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman.

Why Are Projects Late?
 an unrealistic deadline established by someone outside the

software development group

 changing customer requirements that are not reflected in
schedule changes;

 an honest underestimate of the amount of effort and/or the
number of resources that will be required to do the job;

 predictable and/or unpredictable risks that were not considered
when the project commenced;

 technical difficulties that could not have been foreseen in
advance;

 human difficulties that could not have been foreseen in advance;

 miscommunication among project staff that results in delays;

 a failure by project management to recognize that the project is
falling behind schedule and a lack of action to correct the
problem

3

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman.

Scheduling Principles

 compartmentalization—define distinct tasks

 interdependency—indicate task

interrelationship

 effort validation—be sure resources are

available

 defined responsibilities—people must be

assigned

 defined outcomes—each task must have an

output

 defined milestones—review for quality

4

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman.

Effort and Delivery Time

Effort

Cost

Impossible

region

td

Ed

Tmin = 0.75T d

to

Eo

Ea = m (td
4 / ta

4)

development time

Ea = effort in person-months

td = nominal delivery time for schedule

to = optimal development time (in terms of cost)

ta = actual delivery time desired

5

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman.

Effort Allocation

 “front end” activities
 customer communication
 analysis
 design
 review and modification

 construction activities

 coding or code

generation

 testing and installation
 unit, integration
 white-box, black box
 regression

40-50%

30-40%

15-20%

6

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman.

Defining Task Sets

 determine type of project

 assess the degree of rigor required

 identify adaptation criteria

 select appropriate software engineering tasks

7

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman.

Task Set Refinement

1.1 Concept scoping determines the overall scope of the

project.

Task definition: Task 1.1 Concept Scoping

1.1.1 Identify need, benefits and potential customers;

1.1.2 Define desired output/control and input events that drive the application;

Begin Task 1.1.2

1.1.2.1 FTR: Review written description of need

FTR indicates that a formal technical review (Chapter 26) is to be conducted.

1.1.2.2 Derive a list of customer visible outputs/inputs

1.1.2.3 FTR: Review outputs/inputs with customer and revise as required;

endtask Task 1.1.2

1.1.3 Define the functionality/behavior for each major function;

Begin Task 1.1.3

1.1.3.1 FTR: Review output and input data objects derived in task 1.1.2;

1.1.3.2 Derive a model of functions/behaviors;

1.1.3.3 FTR: Review functions/behaviors with customer and revise as required;

endtask Task 1.1.3

1.1.4 Isolate those elements of the technology to be implemented in software;

1.1.5 Research availability of existing software;

1.1.6 Define technical feasibility;

1.1.7 Make quick estimate of size;

1.1.8 Create a Scope Definition;

endTask definition: Task 1.1

is refined to

8

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman.

Define a Task Network

9

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman.

Timeline Charts

Tasks Week 1 Week 2 Week 3 Week 4 Week n

Task 1

Task 2

Task 3

Task
4Task 5

Task 6

Task 7

Task 8

Task 9

Task 10

Task
11Task 12

10

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman.

Use Automated Tools to

Derive a Timeline Chart

11

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman.

Schedule Tracking

 conduct periodic project status meetings in which
each team member reports progress and problems.

 evaluate the results of all reviews conducted
throughout the software engineering process.

 determine whether formal project milestones (the
diamonds shown in Figure 34.3) have been
accomplished by the scheduled date.

 compare actual start-date to planned start-date for
each project task listed in the resource table (Figure
34.4).

 meet informally with practitioners to obtain their
subjective assessment of progress to date and
problems on the horizon.

 use earned value analysis (Section 34.6) to assess
progress quantitatively.

12

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman.

Progress on an OO Project-I

 Technical milestone: OO analysis completed
• All classes and the class hierarchy have been defined and reviewed.

• Class attributes and operations associated with a class have been
defined and reviewed.

• Class relationships (Chapter 10) have been established and reviewed.

• A behavioral model (Chapter 11) has been created and reviewed.

• Reusable classes have been noted.

 Technical milestone: OO design completed
• The set of subsystems (Chapter 12) has been defined and reviewed.

• Classes are allocated to subsystems and reviewed.

• Task allocation has been established and reviewed.

• Responsibilities and collaborations (Chapter 12) have been identified.

• Attributes and operations have been designed and reviewed.

• The communication model has been created and reviewed.

13

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman.

Progress on an OO Project-II

 Technical milestone: OO programming completed
• Each new class has been implemented in code from the

design model.

• Extracted classes (from a reuse library) have been
implemented.

• Prototype or increment has been built.

 Technical milestone: OO testing
• The correctness and completeness of OO analysis and design

models has been reviewed.

• A class-responsibility-collaboration network (Chapter 10) has
been developed and reviewed.

• Test cases are designed and class-level tests (Chapter 24)
have been conducted for each class.

• Test cases are designed and cluster testing (Chapter 24) is
completed and the classes are integrated.

• System level tests have been completed.

14

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman.

Earned Value Analysis (EVA)

 Earned value

 is a measure of progress

 enables us to assess the “percent of completeness”

of a project using quantitative analysis rather than

rely on a gut feeling

 “provides accurate and reliable readings of

performance from as early as 15 percent into the

project.” [Fle98]

15

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman.

Computing Earned Value-I

 The budgeted cost of work scheduled (BCWS) is
determined for each work task represented in the
schedule.

 BCWSi is the effort planned for work task i.

 To determine progress at a given point along the project
schedule, the value of BCWS is the sum of the BCWSi

values for all work tasks that should have been completed
by that point in time on the project schedule.

 The BCWS values for all work tasks are summed to
derive the budget at completion, BAC. Hence,

BAC = ∑ (BCWSk) for all tasks k

16

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman.

Computing Earned Value-II
 Next, the value for budgeted cost of work performed (BCWP)

is computed.
 The value for BCWP is the sum of the BCWS values for all

work tasks that have actually been completed by a point in time
on the project schedule.

 “the distinction between the BCWS and the BCWP is that
the former represents the budget of the activities that were
planned to be completed and the latter represents the
budget of the activities that actually were completed.” [Wil99]

 Given values for BCWS, BAC, and BCWP, important
progress indicators can be computed:

• Schedule performance index, SPI = BCWP/BCWS

• Schedule variance, SV = BCWP – BCWS

• SPI is an indication of the efficiency with which the project is
utilizing scheduled resources.

17

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman.

Computing Earned Value-III

 Percent scheduled for completion = BCWS/BAC

 provides an indication of the percentage of work that should have

been completed by time t.

 Percent complete = BCWP/BAC

 provides a quantitative indication of the percent of completeness

of the project at a given point in time, t.

 Actual cost of work performed, ACWP, is the sum of the effort

actually expended on work tasks that have been completed by

a point in time on the project schedule. It is then possible to

compute

• Cost performance index, CPI = BCWP/ACWP

• Cost variance, CV = BCWP – ACWP

